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1. Details regarding diagnosis of PD, AD, and dementia hospitalization  

We used the International Classification of Diseases (ICD) hospital admission codes to identify persons who were 

hospitalized with primary or secondary diagnosis billing codes corresponding to Parkinson’s disease (PD), 

Alzheimer’s disease (AD) or dementia during 2000-2016. From 2000 up to and including the 3rd quarter of 2015, 

ICD-9 codes were available, and we used codes beginning with ‘332·’ for PD, codes beginning with ‘331·0’ for AD 

and codes beginning with ‘290’ for dementia. From the 4th quarter of 2015 onwards, ICD-10 codes were in use 

therefore we identified codes G20, G21·11, G21·19 and G21·8 for PD, G30·9 for AD and finally, F05 for dementia. 

To ensure that ICD-10 codes were comparable to the original ICD-9 codes, we compared the difference in incidence 

proportions from the 3rd to the 4th quarter of 2014 to the 3rd to 4th quarter of 2015. The differences are 0.08% and -

0.58% for PD and AD/ADRD (Alzheimer’s disease and related dementias), respectively. 

 

2. Details regarding individual-level and area-level covariates that were adjusted for 

We adjusted for 15 covariates in the main analyses, including four individual-level covariates, eight ZIP code-level 

variables, two county-level variables, and dummy variables indicating geographical regions. Of the 39,065 ZIP codes 

where the full cohort resides, 4,551 ZIP codes had missing information on the 15 covariates we considered, which 

resulted in an exclusion of 2·1% of the Medicare FFS enrollees from our analyses. Details with respect to each of 

these variables are described below. 

 

Individual-level variables: We acquired four individual-level variables from the Medicare denominator files, such 

as a 2-year category of age at entry (65 to 66, 67 to 68, 69 to 70, 71 to 72, etc), race (White, Black, or other/unknown), 

sex (male or female), and an indicator variable for Medicaid eligibility, a surrogate for individual-level socioeconomic 

status (SES). 

 

ZIP code-level variables: Eight variables available at ZIP Code Tabulation Areas (ZCTA) level were derived from 

the 2000 U.S. Census, the 2010 U.S. Census, and the American Community Survey (ACS) from 2005 to 2016. If 

variables were missing for a year, we linearly interpolated or extrapolated their values using available data. The ZCTA-

level variables included median home value, median household income, population density, percent Hispanic, percent 

Black, percent of the population with less than a high school degree, percent below the poverty level, and percent of 

owner-occupied housing units. These ZCTA-level data were then matched to ZIP codes.  

 

County-level variables: Two county-level variables, average body mass index (BMI) and percent of tht population 

that were ever smokers, were acquired from the Behavioral Risk Factor Surveillance System (BRFSS) for the period 

of 2000-2016. These county-level variables were matched to ZIP codes if the ZIP code centroids fell within the county 

boundary. 

 

Regional dummy variable: We used five geographical regions in the US: Northeast, Southeast, Midwest, West, and 

Southwest (Figure S1). 
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Figure S1. Regional dummy variable 

 

3. Details regarding the Cox-equivalent approach for massive-scale cohort studies  

 

Figure S2. Schematic diagram of the Cox-equivalent approach for massive-scale cohort studies 

As illustrated in Figure S2, the key of our approach was to collapse the individual-level records to a high-dimensional 

space of features, while keeping the integrity of stratum units for analysis (Figure S2). People with the same sex, race, 

Medicaid eligibility, and 2-year categories of age at study entry, were aggregated and treated as one single grid cell in 

this high-dimensional space, because they belonged to the same stratum and as such were treated as interchangeable 

in the analysis. Using this method, we reduced the data size to 13% of the original data size. In addition, the Cox-

equivalent Poisson models can utilize parallel computing techniques that are not available for traditional Cox 

proportional hazard models, further reducing the computational time. Therefore, our approach has the great advantage 

of overcoming common computational issues (e.g., inadequate memory size and lengthy computational time) and 
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improving the efficiency of the models when dealing with big data. We used the bam function in the mgcv package 

version 1·8-29 in R to implement this approach using 24 computing cores in parallel computing. All analyses of this 

study were conducted on the Research Computing Environment, which is supported by the Institute for Quantitative 

Social Science in the Faculty of Arts and Sciences at Harvard University. 

 

Below we show the mathematical details on the equivalence between the Cox proportional hazards model and the 

stratified Poisson model. We consider the following stratified Cox proportional hazards model with Anderson-Gill 

formulation to examine the long-term effects of PM2.5 on the neurological endpoints: 

 

ℎ𝑐,𝑧(𝑎, 𝑡)  = ℎ0
𝑐(𝑎)𝑒𝑥𝑝(𝛽1𝑊𝑧,𝑡 + 𝛽2𝐶𝑧,𝑡)                                                                               (1) 

 

Where ℎ𝑐,𝑧(𝑎, 𝑡) denotes the hazard of neurological hospitalization at follow-up year a, calendar year t, and ZIP code 

z for individual-characteristic strata c (i.e., age group, sex, race, Medicaid eligibility), and ℎ0
𝑐(𝑎)is a strata-specific 

baseline hazard function. 𝑊𝑧,𝑡 denotes the annual average PM2.5 concentration in ZIP code z in calendar year t. 𝐶𝑧,𝑡 

denotes the ZIP code time-varying covariates in calendar year t and ZIP code z, to adjust for potential confounding.  

 

Model (1) can be written as  

 
𝐸(𝑌𝑎,𝑡

𝑐,𝑧)

𝑇𝑎,𝑡
𝑐,𝑧 = ℎ0

𝑐(𝑎)𝑒𝑥𝑝(𝛽1𝑊𝑧,𝑡 + 𝛽2𝐶𝑧,𝑡)                                                                                        (2) 

 

Where 𝐸(𝑌𝑎,𝑡
𝑐,𝑧) denotes the expected number of events at follow-up year a, calendar year t, and ZIP code z for each 

individual-characteristic stratum c, and 𝑇𝑎,𝑡
𝑐,𝑧

 is the corresponding total person-time in that stratum. 

 

Taking the log of both sides, model (2) can be written as  

 

log(𝐸(𝑌𝑎,𝑡
𝑐,𝑧)) = log(𝑇𝑎,𝑡

𝑐,𝑧
) + log(ℎ0

𝑐(𝑎)) + 𝛽1𝑊𝑧,𝑡 +  𝛽2𝐶𝑧,𝑡                                                       (3) 

 

Model (1) is equivalent to the stratified Poisson model (3). The key difference between the two models is that the log-

linear model is fitted on an aggregated dataset, yet the Cox model is fitted on individual-level observations. However, 

since in model (1), both the exposure 𝑊𝑧,𝑡 and the potential confounders 𝐶𝑧,𝑡 are at the ZIP code level, we can still 

construct the aggregated dataset at strata for each ZIP code z, follow-up year a, and calendar year t without losing the 

capability to detect individual-level health PM2.5 effects, assuming the ZIP code average PM2.5 exposure is the 

individual exposure of interest. 

 

4. Details regarding the sensitivity analyses 

We conducted a series of sensitivity analyses to assess the robustness of our results. First, we excluded potentially 

prevalent cases by removing anyone who had a first admission for the outcomes of interest in their first two years of 

follow-up and repeated our analyses. Second, we fit models at various levels of confounding adjustment by excluding 

a different set of covariates each time, to assess the bias potential of omitting individual covariates. Third, given that 

the diseases are age-dependent (e.g., aging is the single greatest risk factor for AD), we considered age at entry in the 

Medicare cohort using 1-year intervals instead of 2 years for model stratification. Fourth, we repeated the same 

analysis using AD and dementia outcome separately and we report the individual HRs for these analyses. Lastly, we 

also looked at the distribution of primary diagnostic codes among cases with secondary PD diagnosis and AD/ADRD 

diagnosis; circulatory system diseases (CSD) were by far the highest (392,588 [41·1%] and 1,323,044 [45·3%] for 

PD and AD/ADRD, respectively). To evaluate whether the observed associations could be attributed to an association 

between PM2.5 and CSD, we excluded secondary diagnostic cases with CSD as the primary diagnostic disease and 

repeated our analyses. 

 

       4.1 Sensitivity analysis regarding exclusion of potentially prevalent cases 

Because we have no information on the health status of beneficiaries prior to enrollment (i.e., whether they had ever 

been hospitalized for PD, or AD/ADRD), we repeated our analyses excluding potentially prevalent cases. Specifically, 

we removed anyone who had a first admission for PD or AD/ADRD in their first two years in the cohort, and repeated 

analyses with everyone else in. The results show that both effect estimates were slightly elevated, with respective 
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hazard ratios (HRs) of 1·16 (95% CI: 1·15, 1·17) and 1·17 (95% CI: 1·16, 1·18) for first PD and AD/ADRD, 

respectively, per 5 μg/m3 increase in annual PM2.5 concentrations. 

 

       4.2 Sensitivity analysis regarding confounding adjustment 

We fit several alternative models, each excluding a different set of covariates, and compared the effect estimates to 

assess the impact of potential residual or unmeasured confounding. Table S1 shows the estimated HRs and 95% CIs 

per 5 μg/m3 increase in annual PM2.5 concentrations for each alternative model.  

 

Table S1. Estimated HRs at different levels of confounding adjustment 

 

 PD AD/ADRD 

 HR (95% CI) HR (95% CI) 

Main analysis 1·13 (1·12, 1·14) 1·13 (1·12, 1·14) 

Main analysis excluding sex 1·13 (1·12, 1·14) 1·13 (1·12, 1·14) 

Main analysis excluding age 1·13 (1·12, 1·14) 1·12 (1·11, 1·14) 

Main analysis excluding race 1·13 (1·12, 1·14) 1·12 (1·11, 1·13) 

Main analysis excluding Medicaid eligibility 1·14 (1·13, 1·15) 1·14 (1·13, 1·15) 

Main analysis excluding time trends 1·17 (1·16, 1·18) 1·14 (1·13, 1·15) 

Main analysis excluding dummy region 1·14 (1·13, 1·15) 1·12 (1·11, 1·13) 

Main analysis excluding US Census 1·14 (1·13, 1·15) 1·14 (1·13, 1·15) 

Main analysis excluding BRFSS 1·14 (1·13, 1·15) 1.16 (1·15, 1·17) 

 

        4.3 Sensitivity analysis regarding the categorization of age at study entry 

In the main analysis, we considered 2-year categories of age at study entry. We conducted a sensitivity analysis using 

1-year age intervals: 65 to 66, 66 to 67, 67 to 68, …, 94 to 95, and above 95 years. This narrower age interval yielded 

identical results with 2-year age intervals (results not shown) but substantially increased the model run time.  

 

        4.4 Sensitivity analysis regarding the separate AD and dementia cohorts 

We also constructed cohorts for AD and dementia separately. There were in total 2·5 million and 1·1 million first 

admissions for AD and dementia, with 475·8 million and 478·6 million person-years of follow-up, respectively (Table 

S2). For the low-exposure analyses, the corresponding number of first admissions were 0·7 million and 0·3 million, 

with 155·7 million and 156·4 million person-years of follow-up, respectively. For each 5 μg/m3 increase in annual 

PM2.5 concentrations, we observed a HR of 1·17 (95% CI: 1·16, 1·18) for AD admissions, and a HR of 1·06 (95% CI: 

1·05, 1·07) for dementia admissions. Effect estimates in the low-exposure analyses were both elevated, with 

corresponding HRs of 1·19 (95% CI: 1·16, 1·22) and 1·19 (95% CI: 1·15, 1·24), respectively. 
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Table S2. Sensitivity analysis: hazard ratios for Alzheimer’s disease and dementia associated with each 5 

μg/m3 increase in PM2.5 

 

 AD Dementia 

Main analyses 

  Number of admissions 2,490,431 1,233,132 

  Total person-years 475,820,277 478,636,053 

  Median follow-up year 7 7 

  HR per 5 µg/m3 PM2.5 1·17 (1·16, 1·18) 1·06 (1·05, 1·07) 

Low-exposure analyses 

  Number of admissions 671,332 340,717 

  Total person-years 155,722,376 156,446,182 

  Median follow-up year 6 6 

  HR per 5 µg/m3 PM2.5 1·19 (1·16, 1·22) 1·19 (1·15, 1·24) 

 

4.5 Sensitivity analysis regarding the primary diagnostic disease codes  

We examined the distribution of primary and secondary diagnoses for first hospitalization. For PD, there were a total 

of 77,016 (7·5%) primary diagnoses and 956,653 (92·5%) secondary diagnoses, whereas for AD/ADRD, there were 

a total of 502,565 (14·7%) primary diagnoses and 2,922,537 (85·3%) secondary diagnoses. Firstly, we conducted a 

sensitivity analysis restricting the first hospitalization cases only to those with primary diagnoses codes. For the 

primary diagnoses analysis, for each 5 μg/m3 increase in annual PM2.5 concentrations, we observed HRs of 1·14 (95% 

CI: 1·12, 1·16) and 1·18 (95% CI: 1·16, 1·20) for first hospitalizations with primary diagnosis codes for PD and 

AD/ADRD, respectively. We are concerned that restricting only to those cases with primary discharge codes may 

induce bias, as people with these diseases are not commonly hospitalized for these diseases, and therefore the subset 

of cases with these diseases as primary discharge codes may not be representative of all cases. Reassuringly, the 

observed HRs are not very different when analyzing cases with primary/secondary discharge codes combined or 

analyzing cases with primary codes only. 

 

Given the large amount of secondary diagnoses, we compared the distributions of common primary diagnoses among 

PD and AD/ADRD cases identified through secondary diagnosis vs. non-case Medicare enrollees. The most common 

primary diagnoses included circulatory system diseases (CSD), cardiovascular disease (CVD), pneumonia, heart 

failure (CHF), acute myocardial infarction (AMI), stroke, chronic obstructive pulmonary disease (COPD), diabetes 

and lung cancer. Although the proportions of the primary diagnoses for the common diseases were slightly lower 

among PD and AD/ADRD cases identified through secondary diagnoses, the rankings were mostly consistent (Tables 

S3 and S4). 

 

To evaluate whether the observed associations in the main analysis could be attributed to an association between PM2.5 

and the most common primary diagnosis coding group for PD and AD/ADRD cases identified through secondary 

diagnosis, we excluded from analysis those cases with CSD as the primary diagnosis and repeated analyses. For each 

5 μg/m3 increase in annual PM2.5 concentrations, we observed HRs of 1·11 (95% CI: 1·10, 1·12) and 1·13 (95% CI: 

1·12, 1·14) for first hospitalizations with primary or secondary diagnosis codes for PD and AD/ADRD in this 

subpopulation, respectively. The effect estimates are similar to the main results, indicating that the observed 

associations cannot be attributed to a PM2.5 – CSD association. 
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Table S3. Sensitivity analysis: distributions of primary diagnostic disease types among PD cases vs. non-cases. 

 

 PD identified from 

secondary diagnosis 

No PD  

 

Primary Diagnosis n (%) 

CSD  392,588 (41·1%) 18,137,171 (49·4%) 

CVD 268,576 (28·0%) 13,943,584 (38·0%) 

Pneumonia 129,339 (13·5%) 5,168,669 (14·1%) 

CHF 68,449 (7·2%) 4,482,036 (12·2%) 

AMI 52,710 (5·5%) 3,348,458 (9·1%) 

Stroke 48,020 (5·0%) 2,063,404 (5·6%) 

COPD 40,448 (4·2%) 2,424,983 (6·6%) 

Diabetes 25,599 (2·7%) 1,172,902 (3·2%) 

Lung cancer 5,435 (0·6%) 809,809 (2·3%) 

 

Table S4. Sensitivity analysis: distributions of primary diagnostic disease types among AD/ADRD cases vs. 

non-cases 

 

 AD/ADRD identified from 

secondary diagnosis 

No AD/ADRD 

 

Primary Diagnosis n (%) 

CSD  1,323,044 (45·3%) 17,064,104 (49·1%) 

CVD 858,968 (29·0%) 13,259,384 (38·1%) 

Pneumonia 454,323 (15·6%) 4,657,143 (13·4%) 

CHF 248,082 (8·5%) 4,252,024 (12·2%) 

AMI 187,655 (6·0%) 3,175,249 (9·1%) 

Stroke 213,342 (7·3%) 1,853,834 (5·3%) 

COPD 33,424 (1·1%) 2,303,755 (6·6%) 

Diabetes 96,991 (3·3%) 1,083,020 (3·1%) 

Lung cancer 16,051 (0·6%) 809,809 (2·3%) 

 
4.6 Sensitivity analysis regarding the exposure with 1-year lag period  

In the main analysis, we use annual average PM2.5 during the same year when the outcome occurred. We conducted a 

sensitivity analysis using the annual average exposure during the year preceding the outcome (e.g., using annual 

average PM2.5 in 2015 to link the outcome in 2016). Since we only access the PM2.5 exposures from 2000 to 2016, we 

constructed a Medicare cohort from 2001 to 2016, and link it to the PM2.5 exposure with 1-year lag period. For the 1-

year lagged exposure analysis, for each 5 μg/m3 increase in annual PM2.5 concentrations, we observed HRs of 1·13 

(95% CI: 1·12, 1·14) and 1·13 (95% CI: 1·12, 1·14) for first hospitalizations with primary or secondary diagnosis 

codes for PD and AD/ADRD in this subpopulation, respectively. The results are nearly identical with the findings 

from our main analysis. 

 

4.7 Sensitivity analysis regarding the subgroup analyses by region  

We used five geographical regions in the US: Northeast, Southeast, Midwest, West, and Southwest (Figure S1). To 

evaluate the potential heterogeneity of associations by geographical regions, we conducted additional analyses, 

stratified by region of residence. For each 5 μg/m3 increase in annual PM2.5 concentrations, we observed HRs of 1·26 

(95% CI: 1·23, 1·29), 1·06 (95% CI: 1·04, 1·08), 1·15 (95% CI: 1·13, 1·17), 1·12 (95% CI: 1·10, 1·136), and 1·22 

(95% CI: 1·19, 1·25) for first hospitalizations with primary or secondary diagnosis codes for PD in Northeast, 

Southeast, Midwest, West, and Southwest subpopulations, respectively. Moreover, for each 5 μg/m3 increase in annual 

PM2.5 concentrations, we observed HRs of 1·06 (95% CI: 1·03, 1·09), 1·21 (95% CI: 1·19, 1·23), 1·27 (95% CI: 1·25, 

1·30), 1·09 (95% CI: 1·06, 1·11), and 1·25 (95% CI: 1·22, 1·28) for first hospitalizations with primary or secondary 

diagnosis codes for AD/ADRD in Northeast, Southeast, Midwest, West, and Southwest subpopulations, respectively. 

In summary, we observed the highest HR for first PD hospitalization among Medicare enrollees in the Northeast and 

for first AD/ADRD hospitalization in the Midwest. 

 
5. Details regarding the R code in this analysis 

####################################################################### 

######## Aggregate individual-level data for log-linear model########## 

###################################################################### 
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PD=readRDS(paste0(dir_out,"PD_0016.rds")) 

str(PD) 

            PD$time_count<-PD$FollowupYearPlusOne-PD$FollowupYear 

 

# Calculate the total count of PD hospitalizations for strata c at  

# follow-up year a, time year t and location ZIP code z 

PDcount<-aggregate(c(PD[,8]), 

by=list(PD$Sex_gp,PD$race,PD$age_gp,PD$Dual_gp,PD$FollowupYear,PD$zipc,

PD$year), FUN=sum) 

 

# Calculate the total person-time at-risk for strata c at follow-up  

# year a, time year t and location ZIP code z 

time_count<-aggregate(PD[,11], 

by=list(PD$Sex_gp,PD$race,PD$age_gp,PD$Dual_gp,PD$FollowupYear,PD$zipc,

PD$year), FUN=sum) 

 

aggregate_data<-merge(PDcount,time_count,by=c("Group.1", "Group.2", 

"Group.3", "Group.4", "Group.5", "Group.6", "Group.7")) 

colnames(aggregate_data)[8:9]<-c("PD","time_count") 

colnames(aggregate_data)[1:7]<-

c("Sex","Race","Age_gp","Dual","FollowupYear","zipc","year") 

 

# Merge with other covariates 

covariates=readRDS(paste0(dir_cov,"covariates0016.rds"))  

aggregate_PD<-left_join(aggregate_data,covariates, by=c("zipc","year")) 

 

# Save the final dataset 

saveRDS(aggregate_PD,paste0(dir_out,"aggregate_PD_0016_2y.rds")) 

 

#######################################################################

############### Cox-equivalent Poisson approach ####################### 

###################################################################### 

library("coxme") 

library("survival") 

library("mgcv") 

library("lme4") 

 

print(detectCores()) 

cl=makeCluster(10,outfile='') 

registerDoParallel(cl) 

 

Sys.time() 

bam_PD<-bam(PD~pmmean +as.factor(year)+as.factor(region) 

            + mean_bmi + smoke_rate + hispanic + pct_blk + 

medhouseholdincome + medianhousevalue + poverty + education + 

popdensity + pct_owner_occ                                  

+(as.factor(Sex)+as.factor(Race)+as.factor(Age_gp)+as.factor(Dual)+as.f

actor(FollowupYear))^5          

+offset(log(time_count)),data=aggregate_PD,family=poisson(link="log"),c

hunk.size=5000,cluster=cl,control=gam.control(trace=TRUE)) 
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summary(bam_PD) 

Sys.time() 

 

#######################################################################

#################### m-out-n bootstrapping ############################ 

###################################################################### 

aggregate_PD_boots.list<-split(aggregate_PD, list(aggregate_PD$zipc)) 

num_uniq_zip <- length(unique(aggregate_PD$zipc)) 

 

PD_coefs_boots<-NULL 

 

Sys.time() 

for (boots_id in 1:500){ 

  set.seed(boots_id) 

  zip_sample<-

sample(1:num_uniq_zip,floor(2*sqrt(num_uniq_zip)),replace=T)   

 

  aggregate_PD_boots<-

data.frame(Reduce(rbind,aggregate_PD_boots.list[zip_sample])) 

   

  Sys.time() 

bam_PD<-bam(PD~pmmean +as.factor(year)+as.factor(region) 

            + mean_bmi + smoke_rate + hispanic + pct_blk + 

medhouseholdincome + medianhousevalue + poverty + education + 

popdensity + pct_owner_occ           

+(as.factor(Sex)+as.factor(Race)+as.factor(Age_gp)+as.factor(Dual)+as.f

actor(FollowupYear))^5          

+offset(log(time_count)),data=aggregate_PD,family=poisson(link="log"),c

hunk.size=5000,cluster=cl,control=gam.control(trace=TRUE)) 

   

  PD_coefs_boots<-c(PD_coefs_boots,bam_PD$coefficients[2]) 

  Sys.time() 

  gc() 

} 

saveRDS(PD_coefs_boots,paste0(dir_out,"PD_coefs_boots.rds")) 

 

stopCluster(cl) 

 

#bootstrapping standard error: 

sd(PD_coefs_boots)*sqrt(floor(2*sqrt(num_uniq_zip)))/sqrt(num_uniq_zip) 


