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a b s t r a c t

Medical imaging techniques are being rapidly developed and used for diagnosis and
prognostic predictions. To validate a prognostic predictive utility of a new imagingmarker,
a temporal association needs to be established to show an association between its baseline
value with a subsequent chance of having the relevant clinical outcome. Validation of
such techniques has several difficulties. First, different from techniques based on blood or
tissue specimen, imaging techniques often have no historical samples to study and require
new studies to collect data. For rare events, it can be costly. Second, the rapid technology
evolution requires such validation studies to be short in order to keep the evaluation
relevant. A new statistical design is proposed that extends traditional prospective cohort
study by adding cases with known time of events and including a short-term follow-up to
estimate the prospective odds ratio for the clinical endpoint of interest within a reasonably
short duration of time. Under a Markov model, this new design can deliver a consistent
estimate of the odds ratio and a formula for asymptotic variance. Numerical studies suggest
that the new design induces a smaller variance than the corresponding prospective cohort
study within three follow-ups. An application to Alzheimer’s disease data demonstrates
that the proposed design has a potential to be useful to rapidly establish a prognostic
validity of a new imaging marker within a reasonable time, with a small sample size.

Published by Elsevier B.V.

1. Introduction

Precision medicine depends on successfully developed biomarkers to accurately predict a risk of adverse health
outcomes, such as having a disease, osteoporotic fracture, heart failure, or death. A biomarker is defined as ‘‘a characteristic
that can be objectively measured and evaluated as an indicator of normal biological processes, pathogenic processes, or
pharmacologic response to therapeutic intervention (Biomarkers Definitions Working Group, 2001)’’. New biomarkers are
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discovered in an accelerated pace due to recent advances in genetic, genomic, and protein-based methods of treating
diseases as well as evolutions in in vivo imaging and tissue collection technologies (Altar, 2008). Biomarkers have multiple
applications, including prediction of disease risk, detection of an existing disease, and estimation of patient prognosis
(European Society of Radiology, 2010). To be useful as a prognostic tool, a biomarker has to be scientifically validated through
statistical studies. As an illustration, suppose thatwe are interested in the clinical event of Alzheimer’s disease (AD), themost
common form of dementia, among thosewithmild cognitive impairment (MCI), a high risk group for this disease, and have a
biomarker that takes a value of H or L, denoting ‘‘high’’ and ‘‘low’’ respectively. We want to see if the baseline measurement
of H or L will predict the risk of AD in, say, the next year. Among various designs for scientific validation of the marker’s
predictive utility, prospective cohort study and (nested) case-control study are the most relevant.

Prospective cohort study (see, e.g., Porta et al., 2014) is a form of longitudinal study to evaluate a potential association of
the biomarker and the event. In such a study, a group of participants from a population is selected, and each individual in
the group is followed for many years to track the occurrence of the event of interest. In the example of AD above, we may
measure the biomarker status for a group of elderly MCI subjects, and follow them annually to see who convert to AD. If
the conversion rates turn out to be significantly different between those with the biomarker status of H and those with L,
we conclude that the biomarker of question is indeed a valid prognostic biomarker for AD. A cohort study controls many
confounding factors and is the most desirable approach in validating the desired association. However, it is expensive and
not always feasible, especially if the event of interest is rare.

As an alternative, case-control study (see, e.g., Schlesselman, 1982) selects cases, e.g., those elderly who had a conversion
from MCI to AD before the baseline of the study, and find those without a conversion with all the other known risk factors
matched to those cases. We then look back their biomarker status in the past to see the association. Breslow (Breslow,
1976, 1996) showed that a case-control study can yield the same odds ratio as that would have been obtained from a
prospective cohort study. The advantage of case-control study is that it can be performed at a lower cost for rare events than
the corresponding prospective cohort study, and in a shorter time. The validity of a case-control study, however, depends
upon its ability to evaluate the historical values of the potential biomarker. For the validation of serum- or tissue-based
biomarkers, nested case-control study has been used conventionally. This design relies on historically conducted cohort
studies, from which the cases and the controls are selected retrospectively. It then takes advantage of historically collected
serum or tissue specimen in the cohort studies to determine the historical values of the potential biomarker.

Imaging biomarkers measure anatomical, functional or molecular parameters using radiological imaging technologies.
Compared to tissue-based and serum-based biomarkers, characteristics of imaging biomarkers include non-invasiveness,
spatiotemporal resolution, ability to be measured longitudinally, and adaptivity to technological advances. Due to these
characteristics, imaging biomarkers are increasingly used in major medical areas such as cancer, cardiovascular diseases,
musculoskeletal diseases, neurological diseases, and so on (European Society of Radiology, 2010). As for validation,
longitudinal cohort study is particularly difficult for imaging biomarkers, because of the rapid pace of technological
innovations in imaging sciences: often the technology becomes obsolete before the conclusion of a cohort study ismade. Cost
and feasibility issues for rare events still pertain. Nested case-control study design does not work for imaging biomarkers
either, because many biomarkers depend on the technology that did not exist in the past, thus the historical values are
impossible to evaluate. For example, in studying AD, the hippocampus as an imaging biomarker has drawn a significant
attention by researchers because of the nature of neuronal loss related with memory loss in AD. As imaging technology
develops, it has become feasible to observe hippocampus in vivo through non-invasive ways such as magnetic resonance
imaging (MRI). Numerous studies have reported that hippocampus atrophy is associated with AD (Schuff et al., 2009, and
references therein) and loss of hippocampal volume predicts progression to AD (Jack et al., 1999). Due to the insidious nature
of AD, longitudinal study is desirable to confirm that temporal change of hippocampal volume has a prognostic potential as
an MRI-based biomarker for AD; some large-scale brain MRI cohort studies were launched in more than 10 years ago, and
are still on-going (Weiner et al., 2015). However, the most developed MRI scanner is not available to every participant in
the study because of the rapidly developing technology. For instance, 1.5T MRI scanners were popular in a few years ago,
but nowadays 3T scanners are demanded in most AD studies.

Another example is from the research of osteoporosis, where the incidence rate is low and standard diagnosis method
is low-cost already. The broadband quantitative ultrasonometry (QUS) for studying bone mineral density and structure at
low cost was developed before 1984 (Langton et al., 1984). However, its prognostic utility of measuring osteoporic fracture
risk was not established until a longitudinal cohort study through the Study of Osteoporotic Fractures (SOF) confirmed it in
1997 (Bauer et al., 1997). Although the SOF cohort had previous visits, it was not possible to use a nested case-control study
design and the past SOF data because the historical QUS measures were not available. In recent years, the costs of QUS and
dual X-ray absorptiometry (DXA), a competing osteodensitometry method, have both gone down to less than $50 per scan,
making future technologies much more difficult to validate their prognostic utility through prospective cohort studies.

Thus there is a strong demand for a design that is more efficient and rapid than prospective cohort designs so not to
wait until all normal subjects to develop diseases, while estimating the odds ratio of a new imaging biomarker unbiasedly
comparedwith cross-sectional designs.We propose a hybrid case-control study designwith a short-term follow-up in order
to estimate the odds ratio of a new (potential) biomarker consistentlywithin a short time andwith a feasible sample size. Our
design takes advantage of a case-control design to enrich cases for non-fatal outcomes, and a feature of imaging biomarkers
that they can bemeasured repeatedly for study participants via follow-ups. This design, however, can be applied to any other
biomarkers as long as they share these characteristics, such asmobile biomarkers.We use statistical modeling to impute the
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missing marker measurements prior to the outcome. We also assume clinical outcomes for which the time of occurrence is
known (e.g., AD or fracture), while this assumption can be relaxed.

We organize our paper as follows. Section 2 describes the new design and the statistical model in detail. Section 3
considers the estimation procedure and the large-sample properties associatedwith the newdesign. In Section 4we conduct
numerical and simulation studies to compare the efficiency between our new design and prospective cohort study design. In
Section 5 we apply the new design to a study of imaging biomarkers for AD. Section 6 provides conclusions and discussions.
Notation We borrow some notations from matrix calculus. A matrix is denoted by a capital letter. A vector is denoted by a
lowercase letter. Every vector is a column vector otherwisementioned. The transpose of matrix A is denoted by AT . Notation
(A)ij represents the component of matrix A on the ith row and jth column at the same time. Notation (A)i· denotes the
column vector made from the ith row of matrix A. Notation (A)·j denotes the jth column of matrix A. The ith component of
vector x is denoted by xi. Symbol 0 is used to represent either number zero, zero vector, or zero matrix whose dimension
is determined by the context and conformality. When necessary, notations Om×n and Om are used to refer to m × n and
m × m zero matrices, respectively. Symbol 1 represents a vector of all ones, with a dimension conformal to the operation
with other matrices. Operator vec() is used to vectorize a matrix: for anm×nmatrix A, vec(A) = [(A)T

·1, . . . , (A)
T
·n]

T
∈ Rmn.

The inverse of the vec() operator is mat(): mat(vec(A)) = A. Notation diag(A1, . . . , An) refers to a (block) diagonal matrix
that consists diagonal blocks A1, . . . , An; for a vector x = (x1, . . . , xn)T , diag(x) = diag(x1, . . . , xn). The Kronecker product
is denoted by ⊗: if A ∈ Rm×n and B ∈ Rp×q, then

A ⊗ B =

(A)11B · · · (A)1nB
...

. . .
...

(A)m1B · · · (A)mnB

 ∈ Rmp×nq.

Matrix differential is such that

dA =

d(A)11 · · · d(A)1n
...

. . .
...

d(A)m1 · · · d(A)mn

 ,
so vec(dA) = d vec(A). The Kronecker delta is defined as

δij =


1 if i = j,
0 otherwise.

2. Cross-sectional design with a short-term follow-up

The concept of the cross-sectional design with a short-term follow-up is illustrated in Fig. 1 in the context of the AD
example of the previous section. The population at risk is elderly people who have MCI initially. The research question
is whether the biomarker of interest, such as MRI-based hippocampal volume, is predictive of AD within a year from
its measurement. Because the prevalence of AD is low, prospective designs are expected to be expensive and difficult to
implement. Instead, a cross-sectional design can be conducted as follows. The study population, covariate-matched at the
baseline, consists of two groups, one those who developed AD within t0 time units before the study begins (case), and the
other free of AD by the baseline (control). The time axis is normalized so that t0 corresponds to the origin. For simplicity, it
is assumed that the biomarker yields binary values of H and L. This may refer to relatively small (high risk of AD) and large
(low risk) hippocampal volumes, respectively. Let the biomarker measurement at time t be Y (t). This is a binary-valued
stochastic process. The disease status is also a stochastic process and is denoted by S(t), taking binary values of N (normal)
and D (diseased). Thus the control group corresponds to those with S(t0) = N, and the case S(t0) = D. Initially, S(0) ≡ N.
Then the quantity of interest is the odds ratio

Pr(S(t) = D|S(0) = N, Y (0) = L)/ Pr(S(t) = D|S(0) = N, Y (0) = H)

Pr(S(t) = N|S(0) = N, Y (0) = L)/ Pr(S(t) = N|S(0) = N, Y (0) = H)
,

for t = 1, . . . , t0. Unfortunately, however, the historical values of the biomarker are not available, thus Y (0) is unknown.
Nevertheless we can keep track of the progression of disease at population level as measured by the proportion of each

biomarker level for t > t0. Typically the proportion of H (small hippocampi) increases at a natural rate with aging but this
rate is accelerated after the on-set of AD at time τ < t0. Therefore, if these rates do not vary abruptly with time, then a
short-term follow-up study is sufficient to estimate them reliably. We can also extrapolate the progression to estimate Y (0)
using the estimated rates. Note that, under the same assumption of stable progression, the incidence rate for each level
of the biomarker can also be estimated, hence the odds ratio. However, unless the incidence rates are large enough for all
levels, they cannot be reliably estimated by a short-term follow-up with small to moderate sample sizes; if this is indeed
the case, a prospective design will become feasible.

To be able to extrapolate the progression, we need a model for the temporal progression of the disease. A simple 2 × 2-
state Markov chain model captures the key features of the assumed progression. This model consists of the measurement
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Fig. 1. Illustration of the cross-sectional design with a short-term follow-up. A measurement of the biomarker level is made in a cross-sectional fashion
at time t0 for each subject in the control group and the case group. Measurements are repeated for T time units during the short-term follow-up period in
order to estimate the rate of change in the proportions of biomarker levels, which differs between the groups after the disease on-set τ if the biomarker is
associated with the disease progression. Using this information the past proportions of the biomarker levels are imputed for each group (blurred region),
in order to estimate the prospective odds ratio of the biomarker levels. Areas filled with green and dots represent the proportions of both biomarker levels
in the undiseased population, whereas those with red stripes the diseased population. The darkened areas indicate the proportions of diseased subjects
during the follow-up, which is difficult to observe as the incidence is low.

process {Yi(t)} and the disease status process {Si(t)}, where i stands for a subject. We assume (Yi(t), Si(t))
i.i.d.
= (Y (t), S(t)),

where Y (t) ∈ {H, L}, and S(t) ∈ {N,D}, as the illustration in the previous paragraphs. We further assume that the joint
process Xt = (Y (t), S(t)) forms a discrete-time Markov chain. The key assumptions of this Markov chain model are that
(1) the ‘‘diseased’’ state is irreversible, and (2) at the disease on-set, the biomarker level does not change abruptly (Chiang,
1980). The first assumption is a common characteristic of many non-fatal irreversible diseases, such as AD and osteoporotic
fracture. The second assumption is due to that the probability of joint events at the same time is low and can be neglected
in an approximation. A similar Markov chain model is considered to analyze temporal changes in MRI-based hippocampal
volume measurements (Schuff et al., 2009).

In matrix form, the transition matrix of our Markov chain can be written as

P =


Λ̄PN Λ

PD


, (1)

where

PN =

 LN HN

LN p 1 − p
HN 1 − q q


, PD =

 LD HD

LD r 1 − r
HD 1 − s s


, (2)

and

Λ = diag(1 − α, 1 − β), Λ̄ = diag(α, β). (3)

Matrix PN is the conditional transition matrix of the biomarker before the disease on-set given that the subject remains
normal after the transition, i.e., conditioned on τ > t + 1, since

Pr(Xt+1 = LN|Xt = LN, τ > t + 1) =
Pr(Xt+1 = LN, Xt = LN, τ > t + 1)

Pr(Xt = LN, τ > t + 1)

=
Pr(Xt+1 = LN, Xt = LN)

Pr(Xt+1 = LN, Xt = LN)+ Pr(Xt+1 = HN, Xt = LN)

=
pα

pα + (1 − p)α
= p,

the proportion of unchanged Lmarker readings among the normal in one year, etc. Likewise, PD is the conditional transition
matrix of the biomarker after the disease on-set, or τ ≤ t . Matrix Λ represents the transition probabilities from normal
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Fig. 2. State transition diagram of the 2 × 2-state Markov chain model of the biomarker level and the disease progression.

states to diseased. That is, α is the probability of transition from LN to LD, and β is that from HN to HD. This matrix is
diagonal reflecting the second assumption in the previous paragraph. The chain starts from ‘‘normal’’ states, i.e.,

(π (0))T =
LN HN LD HD

π
(0)
LN π

(0)
HN 0 0


= [(π

(0)
N )T , 0T

] (4)

in accordance with the population at risk. Given the distribution of the states at time t − 1, the distribution at time t is
obtained by the relation

(π (t))T =

(π

(t)
N )

T (π
(t)
D )

T


= (π (t−1))TP.

The transition diagram of the Markov model is shown in Fig. 2.
Under this model, the basic quantity of interest is the 1-step odds ratio of the disease given that the subject is normal at

age t given by

Pr(τ = t + 1|Xt = HN)/ Pr(τ > t + 1|Xt = HN)

Pr(τ = t + 1|Xt = LN)/ Pr(τ > t + 1|Xt = LN)
=

Pr(Xt+1 = HD|Xt = HN)/ Pr(Xt+1 = HN or LN|Xt = HN)

Pr(Xt+1 = LD|Xt = LN)/ Pr(Xt+1 = LN or HN|Xt = LN)

=
(1 − β)/β

(1 − α)/α
, (5)

or its logarithm, which is a function of Λ (or Λ̄). Even though the individual components of Λ are not estimable with the
cross-sectional design, the (log) odds ratio can be reliably estimated. Quantities PN , PD, and π

(0)
N are nuisance parameters

affecting the accuracy of the estimation of the odds ratio; the former two can bewell estimated by the short-term follow-up.

3. Maximum likelihood estimation and large-sample properties

In this section we consider the maximum likelihood estimation of the parameters of the 2 × 2-state model (1)–(4), and
study the large-sample properties thereof. We first look at a reparameterization of the model to ease computation, and
construct the log likelihood functions for individual parts of the design, that is, for the cross-sectional part and for the short-
term follow-up part separately. Since the 2×2-state model (1)–(4) is easily extended to an L×2-state model with L ordinal
risk levels, we describe the estimation procedure in this more general setting in the sequel.

3.1. Estimation

ReparameterizationWe use the following reparameterization

Λ̄jj =
1

1 + eλj
, π

(0)
Nk =

eγ0k
L

l=1
(1 + eγ0l)

, (PN)jk =
eγjk

L
l=1
(1 + eγjl)

, (PD)jk =
eγ̄jk

L
l=1
(1 + eγ̄jl)

,

and γjL = 0, γ̄jL = 0 for j = 1, . . . , L and k = 1, . . . , L. We also set γ0L = 0 for identifiability. With this parameterization
each parameter is unconstrained in (−∞,∞). We denote the parameters collectively by a vector

θ = [λT , γ T
0 , γ

T , γ̄ T
]
T

∈ R2L2−1,

where

λ = (λ1, . . . , λL)
T ,

γ0 = (γ01, . . . , γ0,L−1)
T ,

γ = (γ T
1 , . . . , γ

T
L )

T , γj = (γj1, . . . , γj,L−1)
T , j = 1, . . . , L

γ̄ = (γ̄ T
1 , . . . , γ̄

T
L )

T , γ̄j = (γ̄j1, . . . , γ̄j,L−1)
T , j = 1, . . . , L.
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Table 1
Data structure of the cross-sectional part of the design for the L×2-stateMarkovianmodel.

Control (N) Case (D)
τ > t0 τ = 1 τ = 2 · · · τ = t0

Risk level
L1 n1 m11 m12 · · · m1t0
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.

LL nL mL1 mL2 · · · mLt0

Sum n m

The log odds ratio of any two levels Lj and Lk is then given by λk − λj. In particular, for the 2 × 2-state model (L = 2),

α = 1/(1 + eλ1),

β = 1/(1 + eλ2).

so that the log odds ratio is λ2 − λ1.

Cross-sectional part Let the control group size be n and the case group size bem. At the beginning of the study, the number
of observations for each group for each risk level can be summarized as in Table 1.
In this table, n, the total number of the control subjects, and m, the total number of the case subjects, are fixed by design;
τ = 1, . . . , t0 refer to the observed disease on-set times for the case subjects; we assume that these are known for each
subject.

The probability of the observation in the control group (normal by time t0) is multinomial with L cells, and the probability
of the jth cell is

Pr(Xt0 = LjN|T > t0) = Pr(Xt0 = LjN|Xt0 = L1N or · · · or LLN) =
π
(t0)
N,j

π
(t0)
N,1 + · · · + π

(t0)
N,L

=
(π

(0)
N )T (Λ̄PN)t0ej

(π
(0)
N )T (Λ̄PN)t01

,

whereπ (t)N is a vector that consists of the first L entries ofπ (t) = PTπ (0), i.e.,π (t) = [(π
(t)
N )

T , (π
(t)
D )

T
]
T . Thus the log-likelihood

of the control group is

l(CS)ctrl (θ) =

L
j=1

nj log(π
(0)
N (Λ̄PN)t0ej)− n log(π (0)N (Λ̄PN)t01)+ const. (6)

The sampling distribution of the case group is also a multinomial with L × t0 cells. The probability of the (j, τ )th cell is
given by

p(τ )LjD
=

Pr(Xt0 = LjD, T = τ)

Pr(T ≤ t0)
, j = 1, . . . , L, τ = 1, . . . , t0.

The numerator is expressed as

Pr(Xt0 = LjD, T = τ) = Pr(Xτ−1 = L1N, Xτ = L1D, Xt0 = LjD)+ · · · + Pr(Xτ−1 = LLN, Xτ = LLD, Xt0 = LjD)

= (π
(τ−1)
N )TΛP t0−τ

D ej = (π
(0)
N )T (Λ̄PN)τ−1ΛP t0−τ

D ej.

The denominator is

Pr(T ≤ t0) = Pr(Xt0 = L1D or · · · or LLD) = π
(t0)
D,1 + π

(t0)
D,L = (π

(t0)
D )T1 = (π

(0)
N )T


t0−1
k=0

(Λ̄PN)k

Λ1,

because

(π
(t)
D )

T
= (π(0))

TΛP t−1
D + (π

(1)
N )TΛP t−2

D + · · · + (π
(t−1)
N )TΛ

= (π
(0)
N )TΛP t−1

D + (π
(0)
N )T (Λ̄PN)ΛP t−2

D + · · · + (π
(0)
N )T (Λ̄PN)t−1Λ

and Pk
D1 = 1. Thus

p(τ )LjD
=
(π

(0)
N )T (Λ̄PN)τ−1ΛP t0−τ

D ej
t0
t=1
(π

(0)
N )T (Λ̄PN)t−1Λ1

,
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and the log likelihood of the case group is

l(CS)case(θ) =

t0
t=1

L
j=1

mjt log

(π

(0)
N )T (Λ̄PN)t−1ΛP t0−t

D ej


− m log


t0−1
t=0

(π
(0)
N )T (Λ̄PN)tΛ1


+ const. (7)

The log likelihood of the cross-sectional part of the data is thus given by

l(CS)(θ) = l(CS)ctrl (θ)+ l(CS)case(θ)

=

L
j=1

nj log(π
(0)
N (Λ̄PN)t0ej)− n log(π (0)N (Λ̄PN)t01)

+

t0
t=1

L
j=1

mjt log

(π

(0)
N )T (Λ̄PN)t−1ΛP t0−t

D ej


− m log


t0−1
t=0

(π
(0)
N )T (Λ̄PN)tΛ1


+ const. (8)

Short-term follow-up part Conditioning on the cross-sectional observations (n1, . . . , nL;m11, . . . ,mLt0), the likelihood of
the short-term follow-up part of the data is that of theMarkov chain, governed by the transitionmatrix P , with two samples
of initial observations (n1, . . . , nL; 0, . . . , 0) and (0, . . . , 0;m1·, . . . ,mL·) for states (L1N, . . . , LLN; L1D, . . . , LLD), where
mj· =

t0
t=1 mjt , j = 1, . . . , L.

The likelihood of the control group for the follow-up part is given by

L(FU)ctrl (θ) ∝


l∈S


m∈S

plm(θ)νlm , S = {L1N, . . . , LLN, L1D, LLD},

where plm(θ) = (P)lm, and νlm is the total number of transitions from state l to state m for t = t0 + 1, . . . , t0 + T in the
control group. Similarly, the likelihood of the case group is

L(FU)case (θ) ∝


l∈S


m∈S

plm(θ)µlm ,

where µlm is the total number of transitions from state l to state m for t = t0 + 1, . . . , t0 + T in the case group. Note that
no transition from LjD to LkN (j ≠ k) is allowed in the model, hence µlm = 0 for l = LjD, m = LkN, j ≠ k. The log likelihood
of the short-term follow-up part of the data is then given by

l(FU)(θ) =


l∈S


m∈S

νlm log plm(θ)+


l∈S


m∈S

µlm log plm(θ)+ const. (9)

Full likelihood The full log likelihood can therefore be written as

l(θ) = l(CS)(θ)+ l(FU)(θ)

=

L
j=1

nj log(π
(0)
N (Λ̄PN)t0ej)− n log(π (0)N (Λ̄PN)t01)+

t0
t=1

L
j=1

mjt log

(π

(0)
N )T (Λ̄PN)t−1ΛP t0−t

D ej


− m log


t0−1
t=0

(π
(0)
N )T (Λ̄PN)tΛ1


+


j∈S


k∈S

νjk log pjk(θ)+


j∈S


k∈S

µjk log pjk(θ)+ const., (10)

which is to be maximized.

3.2. Large-sample properties

Given the point estimate θ̂ of θ (hence that of the log odds ratio λk −λj), we are interested in its large-sample properties.
The limiting condition of interest is when n,m → ∞, while the ratio between the case and control group sizes remains
fixed. First note that the full log likelihood (10) can be written as

l(θ) = lctrl(θ)+ lcase(θ),
where

lctrl(θ) = l(CS)ctrl (θ)+ l(FU)ctrl (θ), (11)

lcase(θ) = l(CS)case (θ)+ l(FU)case (θ). (12)

Samples for lctrl(·) and lcase(·) are independent. Since each of lctrl(θ) and lcase(θ) is a log likelihood of amultinomial distribution
whose cell probabilities are a smooth function of the parameter θ , we have

√
n(θ̂ctrl − θ0)

d
−→ N (0, Ictrl(θ0)−1),

√
m(θ̂case − θ0)

d
−→ N (0, Icase(θ0)−1),
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as n,m → ∞, where θ̂ctrl, θ̂case are the respective maximizers of (11), (12), provided that the Fisher information matrices

Ictrl(θ) =
1
n
Eθ


∂ lctrl
∂θ


∂ lctrl
∂θ

T


Icase(θ) =
1
m

Eθ


∂ lcase
∂θ


∂ lcase
∂θ

T


are full rank at θ = θ0, the true but unknown value of the parameter, and all the elements of π (0)N , PN , PD, and diag(Λ) are
positive (Rao, 1973; Agresti and Kateri, 2012, Ch. 16). These conditions are satisfied if θ0 is bounded. Then the MLE θ̂ , or the
maximizer of (10) is asymptotically normally distributed as

√
n + m(θ̂ − θ0)

d
−→ N (0, I(θ0)−1), (13)

where

I(θ) = ρ1Ictrl(θ)+ ρ2Icase(θ),

as n,m → ∞, n/(n + m) → ρ1, m/(n + m) → ρ2, and ρ1 + ρ2 = 1 (Lehmann and Casella, 1998, Theorem 6.7.1). Thus it
suffices to evaluate Ictrl(θ) and Icase(θ).

The evaluation of Ictrl(θ) and Icase(θ) are, however, somewhat involved, thus we summarize the results in the following
lemmas.

Lemma 1. Define matrix-valued functions

Gk(a, B, C) =

k−1
l=0

diag(aTBl)CBk−1−l
∈ RL×L, Fk(a, B, C) =



k−1
l=0

aTBlCe1Bk−1−l

...
k−1
l=0

aTBlCepBk−1−l

 ∈ RL2×L,

for a ∈ RL, B, C ∈ RL×L. Then

Ictrl(θ) =


KλD1K T

λ KλD1K T
γ0

KλD1K T
γ 0

Kγ0D1K T
λ Kγ0D1K T

γ0
Kγ0D1K T

γ 0
KγD1K T

λ KγD1K T
γ0

KγD1K T
γ 0

0 0 0 0

+

Wλ 0 0 0
0 0 0 0
0 0 Wγ 0
0 0 0 Wγ̄

 =: V11 + V12, (14)

where D1 = diag(π (ctrl))−1
− 11T , with

π (ctrl) = (π
(ctrl)
1 , . . . , π

(ctrl)
L )T with π (ctrl)j =


(π

(0)
N )T (Λ̄PN)t01

−1
(π

(0)
N )T (Λ̄PN)t0ej, j = 1, . . . , L,

and

Kλ =


(π

(0)
N )T (Λ̄PN)t01

−1
Λ̄(Λ̄− I)Gt0(π

(0)
N , Λ̄PN , PN), Kγ0 =


(π

(0)
N )T (Λ̄PN)t01

−1
Λ̄(Λ̄− I)ΣT

0 (Λ̄PN)t0 ,

Kγ =


(π

(0)
N )T (Λ̄PN)t01

−1
Λ̄(Λ̄− I) diag(ΣT

1 , . . . ,Σ
T
L )Ft0(π

(0)
N , Λ̄PN , Λ̄),

with

Σ0 =


Σ̃0

−1T Σ̃0


∈ RL×(L−1), Σ̃0 = diag(IL−1, 0)(diag(π

(0)
N )− π

(0)
N (π

(0)
N )T ) diag(IL−1, 0),

Σj =


Σ̃j

−1T Σ̃j


∈ RL×(L−1), Σ̃j = diag(IL−1, 0)(diag(PT

Nej)− (PT
Nej)(P

T
Nej)

T ) diag(IL−1, 0), j = 1, . . . , L.
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Finally,

Wλ = diag(φ1Λ̄
2
11(1 − Λ̄11)

2(eT1PN diag(PT
NΛ̄e1)−1PT

Ne1 + 1/(1 − Λ̄11)), . . . ,

φLΛ̄
2
LL(1 − Λ̄LL)

2(eTL PN diag(PT
NΛ̄eL)−1PT

NeL + 1/(1 − Λ̄LL))),

Wγ = diag(φ1(1 − Λ̄11)
2ΣT

1 diag(PT
NΛ̄e1)−1Σ1, . . . , φL(1 − Λ̄LL)

2ΣT
L diag(PT

NΛ̄eL)−1ΣL),

Wγ̄ = diag

φL+1Σ̄

T
1 diag(IL−1, 0)(diag(PT

De1)
−1

+ (1/(PT
D)1L)11

T ) diag(IL−1, 0)Σ̄1, . . . ,

φ2LΣ̄
T
L diag(IL−1, 0)(diag(PT

DeL)
−1

+ (1/(PT
D)LL)11

T ) diag(IL−1, 0)Σ̄L

,

with φj =
L

k′=1
T

t=1 π
(ctrl)
k′ (θ)(P t−1)k′j, j = 1, . . . , 2L, and

Σ̄j =


Σ̆j

−1T Σ̆j


∈ RL×(L−1), Σ̆j = diag(IL−1, 0)(diag(PT

Dej)− (PT
Dej)(P

T
Dej)

T ) diag(IL−1, 0), j = 1, . . . , L.

The proof can be found in the Appendix.

Lemma 2. Let Gk, Fk,Σj, j = 0, 1, . . . , L, Σ̄j, j = 1, . . . , L, be those defined in Lemma 1. Then

Icase(θ) =


HλD2HT

λ HλD2HT
γ0

HλD2HT
γ HλD2HT

γ̄

Hγ0D2HT
λ Hγ0D2HT

γ0
Hγ0D2HT

γ Hγ0D2HT
γ̄

HγD2HT
λ HγD2HT

γ0
HγD2HT

γ HγD2HT
γ̄

Hγ̄D2HT
λ Hγ̄D2HT

γ0
Hγ̄D2HT

γ Hγ̄D2HT
γ̄

+

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 Uγ̄

 =: V21 + V22, (15)

where

D2 = diag(π (case))−1
− 2 diag


diag(π (case)

·1 )−1π̃
(case)
·1 (π̃

(case)
·1 )T , . . . , diag(π (case)·t0 )−1π̃

(case)
·t0 (π̃

(case)
·t0 )T


+ diag


(1T diag(π (case)

·1 )−11)π (case)
·1 (π

(case)
·1 )T , . . . , (1T diag(π (case)·t0 )−11)π (case)·t0 (π

(case)
·t0 )T


for π (case) = ((π

(case)
·1 )T , . . . , (π

(case)
·t0 )T )T , with

π
(case)
·t = (π

(case)
1t , . . . , π

(case)
Lt )T , π̃

(case)
·t = ((π

(case)
1t )1/2, . . . , (π

(case)
Lt )1/2)T ,

π
(case)
jt =

(π
(0)
N )T (Λ̄PN)t−1ΛP t0−t

D ej
t0

t ′=1
(π

(0)
N )T (Λ̄PN)t

′−1Λ1
, j = 1, . . . , L, t = 1, . . . , t0,

and

Hλ =
1

t0
t ′=1
(π

(0)
N )T (Λ̄PN)t

′−1Λ1


H(1)λ , . . . ,H

(t0)
λ


, Hγ0 =

1
t0

t ′=1
(π

(0)
N )T (Λ̄PN)t

′−1Λ1


H(1)γ0 , . . . ,H

(t0)
γ0


,

Hγ =
1

t0
t ′=1
(π

(0)
N )T (Λ̄PN)t

′−1Λ1


H(1)γ , . . . ,H

(t0)
γ


, Hγ̄ =

1
t0

t ′=1
(π

(0)
N )T (Λ̄PN)t

′−1Λ1


H(1)γ̄ , . . . ,H

(t0)
γ̄


,

with

H(t)λ = Λ̄(Λ̄− I)

Gt−1(π

(0)
N , Λ̄PN , PN)Λ− diag((π (0)N )T (Λ̄PN)t−1)


P t0−t
D ,

H(t)γ0 = ΣT
0 (Λ̄PN)t−1ΛP t0−t

D ,

H(t)γ = diag(ΣT
1 , . . . ,Σ

T
L )Ft−1(π

(0)
N , Λ̄PN , Λ̄)ΛP t0−t

D ,

H(t)γ̄ = diag(Σ̄T
1 , . . . , Σ̄

T
L )Ft0−t(Λ(PT

NΛ̄)
t−1π

(0)
N , PD, I), t = 1, . . . , t0.
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Finally,

Uγ̄ = diag

ψ1Σ̄

T
1 diag(IL−1, 0)(diag(PT

De1)
−1

+ (1/(PT
D)1L)11

T ) diag(IL−1, 0)Σ̄1, . . . ,

ψLΣ̄
T
L diag(IL−1, 0)(diag(PT

DeL)
−1

+ (1/(PT
D)LL)11

T ) diag(IL−1, 0)Σ̄L

,

with ψj =
L

k′=1
T

t=1
t0

τ=1 π
(case)
k′τ (θ)(P t−1

D )k′j, j = 1, . . . , L.

The proof can be found in the Appendix.
We are ready to establish an asymptotic normality of the estimate θ̂ :

Theorem 1. Assume that θ0, the value of θ with which the data of the study is generated, is bounded, and Ictrl(θ) and Icase(θ),
given in (14) and (15), are full rank at θ = θ0. Then θ̂ , which maximizes the log likelihood (8), satisfies

√
n + m(θ̂ − θ0)

d
−→ N (0, I−1),

as both n and m tend to infinity, while n/(n + m) → ρ1 > 0 and m/(n + m) → ρ2 > 0 with ρ1 + ρ2 = 1, and
I = ρ1Ictrl(θ0)+ ρ2Icase(θ0).

Proof. The conclusion follows immediately from Lemmas 1 and 2, and the argument leading to (13). �

Remark 1. The first terms V11 and V21 of (14) and (15) are due to the cross-sectional part of the design, whereas the second
terms V12 and V22 are due to the short-term follow-up part. The 3 × 3 block principal submatrices of these terms are
associated with the conditional transition probabilities before disease on-set, whereas the last diagonal block with those
after disease on-set. Thus in the control group, measurements before and after disease on-set are uncorrelated with each
other, which is expected; in the case group, follow-up does not provide any information on the pre-disease period, and this
is due to the Markovian assumption.

Remark 2. The prospective cohort counterpart of this design contains only the control group, starting with t = 0. Thus for
this design we have V = V12 with sample size of n + m.

Remark 3. The assumption that θ0 is bounded also ensures that each term of the log likelihood is non-degenerate, because
positivity of the transition probabilities implies that each nj,mjt > 0 almost surely.

4. Numerical studies

4.1. Large-sample asymptotic efficiency

In order to see how the cross-sectional study design with a short-term follow-up has a merit over the prospective cohort
study design, we compare their large-sample asymptotic variances of the estimated log odds ratio by using the 2 × 2-state
model (1)–(4) and the formula in Theorem 1 for a variety of scenarios. In particular, we consider null cases in which the
incidence rates 1 − α and 1 − β are the same regardless of the biomarker level, i.e. the biomarker is non-prognostic, and
non-null cases in which it is prognostic with the odds ratio (5) being approximately 2.0 to the first digit below the decimal
point. We use four different combinations of α and β for each set of cases. We set t0 = 5 and compute the large-sample
asymptotic standard deviation of the maximum likelihood estimate of the log odds ratio for T = 2, 3, 4, 5. We also vary
ρ2, the ratio of the case sample size to the total sample size, from 0.1 to 0.9 with an increment of 0.1. The ratio ρ2 = 0
corresponds to the prospective design started at t = t0, and ρ2 = 1, the case-only scenario, is non-identifiable because of
the assumed irreversibility of the disease. Both extremes are ruled out. The transition matrices before and after the disease
on-set are set as

PN =

 LN HN

LN 0.85 0.15
HN 0.05 0.95


, PD =

 LD HD

LD 0.90 0.10
HD 0.05 0.95


to incorporate an accelerated disease progression, e.g., the loss of bone mineral, after the disease on-set. These matrices are
fixed throughout the scenarios. The initial distribution is set to π (0)N = (0.5, 0.5)T .

In the null cases we use the combinations of incidence rates (1 − α, 1 − β) = (0.001, 0.001), (0.010, 0.010),
(0.020, 0.020), and (0.050, 0.050). The computed large-sample standard deviations are plotted in Fig. 3. No normalization
by the sample size is applied. With small to moderate incidence rates (0.1%–1.0%) the cross-sectional design with two to
three follow-ups suggests a definite merit over the prospective cohort design for reasonably balanced case-control sample
sizes, say ρ2 = 0.5. For the medium rate of 2.0% the new design becomes comparable to the prospective one, whereas for
higher rates it loses its competitive edge.
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Fig. 3. Comparison of the large-sample asymptotic standard deviation of the estimated log odds ratio for the cross-sectional design with a short-term
follow-upwith various case/control sample size ratios and for the prospective cohort design. Null cases (odds ratio = 1). Note that the standard deviations
are not normalized by the sample size.

In the non-null cases we use the incidence rate combinations (1 − α, 1 − β) = (0.005, 0.010), (0.010, 0.020),
(0.020, 0.040), and (0.050, 0.100). Note the odds ratio is roughly 2.0 for each combination. The large-sample asymptotic
standard deviations are computed and plotted in Fig. 4. Again, no normalization by the sample size is applied. The relative
asymptotic efficiency of the new design is retained in even higher incidence rates of 2.0% and 4.0%, up to four follow-ups.
Thus the new design exhibits a relatively higher gain in sensitivity than specificity.

4.2. Finite-sample performance

To see if the large-sample asymptotic efficiency of the new design is maintained in finite-sample settings, we conducted
a simulation study comparing the standard errors of the cross-sectional design with a short-term follow-up and the
prospective cohort study. Specifically, we generated samples from the Markov chain model (1)–(4), with the parameters
set as in Section 4.1. To simulate the case-control design part, we conducted a rejection sampling, i.e., run as many chains
until collectingm diseased subjects, and resample n normal (undiseased) subjects uniformly from the rejected samples. For
the generated dataset, the model was fit by maximizing (10). This procedure was repeated 1000 times to obtain a sample
standard deviation of the estimated log odds ratio. The log likelihood function (10) is highly nonlinear and nonconcave with
2L2 − 1 variables (seven for L = 2), thus is difficult to maximize globally using Newton’s method. To find a solution close to
the global maximizer, we used the GenSA package (Xiang et al., 2013), which shows the best performance in a comparative
study byMullen (2014).We obtained reasonably accurate estimates using a random initialization and themaximumnumber
of iterations of 40; anything else is set default. The 1000 repetition of themaximum likelihood estimation took less than 0.2 s
on average, per dataset per combination of incidence rates. The number of follow-ups T and the ratio of the case sample
size to the total sample size ρ2 were fixed at 3 and 0.5, respectively, and the total sample size n + m tested were varied
between 500, 1000, 2000, 3000, 4000, and 5000. Note that the same combinations of α and β are used as the large-sample
computation.
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Fig. 4. Comparison of the large-sample asymptotic standard deviation of the estimated log odds ratio for the cross-sectional design with a short-term
follow-up with various case/control sample size ratios and for the prospective cohort design. Non-null cases (odds ratio ≈ 2). Note that the standard
deviations are not normalized by the sample size.

Figs. 5 and 6 illustrate that the relative efficiency of the new design is retained throughout the various sample sizes
considered. The gap between the new design and the prospective cohort design decreases as the incidence rates increase,
as expected. The large drop of standard deviation for small incidence rates in the prospective design when the sample size
increases from 500 to 1000 appears to be due to that, at a small incidence rate, transition from the normal to the diseased
state is rarely observed especially for these small sample sizes. More importantly, the standard deviation of the new design
is smaller than the prospective one even for large incidence rates, unlike the asymptotic comparison in Section 4.1. Thus the
large-sample variance formula due to Theorem 1 appears to be conservative.

5. Alzheimer’s disease data example

In this section we illustrate an application of our new design to a dataset arising from a large-scale longitudinal study
of AD, in order to assess the prognostic potential of an MRI-based biomarker. Note that, as our design is brand new, we are
not aware of any existing study to which our design can be applied directly. Therefore we chose the Alzheimer’s Disease
Neuroimaging Initiative (ADNI), a large-scale MRI and fluorodeoxyglucose positron emission tomography (FDG-PET) study
started in 2004, and sampled a subset of subjects to virtually conduct a cross-sectional study with a short-term follow-up.
In neurodegeneration research, MCI is generally considered as the prodromal phase of AD, thus significant efforts have been
made to find biomarkers predictive of conversion fromMCI to AD. The hippocampus is one of themain targets as an imaging
biomarker of AD, and MRI-based hippocampal volume measurements have shown great potential for this purpose (Schuff
et al., 2009; Lee et al., 2016).

5.1. ADNI dataset

Data used in the preparation of this sectionwere obtained from the ADNI database (http://adni.loni.usc.edu), currently in
its third phase. The primary goal of the ADNI has been to test whether serial MRI, positron emission tomography (PET), other

http://adni.loni.usc.edu
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Fig. 5. Comparison of the finite-sample standard deviation of the estimated log odds ratio for the cross-sectional design with a short-term follow-up with
the same case/control sample sizes (ρ2 = 0.5) and three follow-ups (T = 3), and for the prospective cohort design. Null cases (odds ratio = 1).

biological markers, and clinical and neuropsychological assessment can be combined tomeasure the progression ofMCI and
early AD. Determination of sensitive and specific biomarkers of very early AD progression is intended to aid researchers and
clinicians to develop new treatments andmonitor their effectiveness, as well as lessen the time and cost of clinical trials. The
Principal Investigator of the ADNI is Michael W. Weiner, MD, VA Medical Center and University of California, San Francisco.
For up-to-date information on the ADNI, see http://www.adni-info.org.

For our data example we used the ‘‘ADNI MERGE’’ dataset, which combines data from three ADNI funding cycles (ADNI
1, ADNI GO, and ADNI 2). This dataset includes at least three (up to seven) annual longitudinal measurements of the volume
of the hippocampus derived from T1-weighted structural MRI scans (ADNI 1 used 1.5T scanners, ADNI GO and 2 used 3T),
from 265 individuals initially diagnosed as either early or lateMCI, aswell as the baselinemeasurements of the hippocampal
volume from 365 cognitively normal (CN) individuals. Among the MCI subjects, 37 converted to AD over the course of the
follow-up, with at least two subsequent annual measurements available. We regarded three years before a subject’s last
measurement as the age at the beginning of the virtual cross-sectional study with a short-term follow-up for the subject.
We chose 26 individuals with the age at this virtual, cross-sectional baseline greater than 69.0 and less than 81.0 (the age
was measured in a continuous scale) from the 37 converters as the case; 22 were males and 4 were females. The mean and
standard deviation of the age was 75.9 and 3.49, respectively. We then chose 26 individuals from the non-converters by age
and gender matching, regarding the earliest age from which three consecutive annual measurements were available as the
virtual baseline. The gender distribution was identical to the case; the mean and standard deviation of the age was 74.4 and
3.78, respectively.

5.2. Hippocampal volume measurement

The volume of hippocampus was measured based on a semi-automated brain mapping method. As initial guidance,
trained operators manually identified 22 landmarks for hippocampal segmentation (five equally spaced image slices
perpendicular to the long axis of the ipsilateral hippocampus fromhead to tail), then ahigh-dimensional fluid transformation

http://www.adni-info.org
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Fig. 6. Comparison of the finite-sample standard deviation of the estimated log odds ratio for the cross-sectional design with a short-term follow-up with
the same case/control sample sizes (ρ2 = 0.5) and three follow-ups (T = 3), and for the prospective cohort design. Non-null cases (odds ratio ≈ 2).

algorithm (Christensen et al., 1997) transformed a marked hippocampal MRI template from a reference brain to match the
target images of each subject.

Because hippocampal volume (HV) tends to increasewith the brain size, oftenmeasured by the intracranial volume (ICV),
proper normalization of HV by ICV is an important task in evaluating this imaging biomarker. One of the most widely used
methods in the literature is to regress the HV by ICV using the reference population and use the prediction residual to adjust
for the volume in the data. Also in the ADNI data, it is known that the association between age and hippocampal volume is
significant while that between gender and the volume is not (Voevodskaya et al., 2014). Thus we used a linear regression
with ICV and age at scan used to adjust for HV, using the CN group as the reference population. To fit our model, we needed
to discretize the adjusted HV. We chose to dichotomize it for simplicity: as the residuals from the CN group was distributed
roughly from −4000 to +2000, we chose −1000 in the prediction residual as the cutoff to construct a binary marker. We
may call this marker BHV (binarized hippocampal volume).

5.3. Results

For the case and control groups selected by the criteria described in the previous subsections, we applied our method
described in Section 3 to estimate the odds ratio of the imaging biomarker BHV. In order to verify theMarkovian assumption,
we conducted a chi-square test on the two-year transition counts involvedwith the follow-up (p > 0.456). Thus theMarkov
chain approach in our method appears reasonable in this data. We set t0 = 10, rendering the population of interest the MCI
group at age between 60 and 70; m = n = 26, T = 3 and L = 2 by construction. We maximized the log likelihood (10)
in the same fashion as Section 4.2 to obtain the MLE of the log odds ratio (OR) of the BHV, and computed the asymptotic
standard deviation of the estimated log OR by using the formula in Theorem 1, with ρ1 = ρ2 = 0.5. The estimated log OR
was 2.73, with estimated standard deviation of 0.684. In order to see the merit of the new design, we sampled an addition
subset of 26 age and gender matched control subjects, and counted state transitions in the group of total 52 controls.
No sufficient transitions from normal (MCI) to diseased (AD) for calculating the log OR were observed; the asymptotic
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formula from Theorem 1 gives a standard deviation of 1.69 if the parameters were the same as those obtained from the
new design, and predicts that more than 20 visits are required to achieve the same level of standard deviation as the new
design.

The log OR of 2.73± 0.684 is optimistic because of the selection bias of the virtual study as well as the interval censoring.
Nonetheless it is illustrative to demonstrate that temporal trend in hippocampal volume has a potential as a prognostic
biomarker for AD, which has been confirmed in the literature (Rosen et al., 1984; Jack et al., 1999; Schuff et al., 2009). The
cutoff for dichotomization is somewhat arbitrary, although the estimated log OR is not much sensitive to this choice: when
the cutoff was lowered to −1500, it became 2.34 ± 0.824. If the proposed design is implemented, it may provide a more
reasonable figure, with significantly reduced time and efforts compared to large-scale imaging biomarker studies such as
the ADNI.

6. Conclusions

We have proposed and studied the properties of a new statistical study design that extends the traditional prospective
cohort study design by adding cases with known time of events and including a short-term follow-up, in order to estimate
the prospective odds ratio of a clinical endpoint of interests within a reasonably short duration of time. This kind of design
has been called for because of the lack of historical samples and the demand for a short duration of studies originating from
the rapid pace of evolution in prognostic imaging biomarkers. A temporal association need to be established to show an
association between its baseline value and the subsequent chance of the relevant clinical outcome in order to validate the
prognostic utility of markers. We have employed a Markov chain model to establish the necessary temporal association,
and showed that under this model, our new design yields a consistent estimate of odds ratio, and can induce a smaller
variance than from the corresponding prospective cohort design within a short duration for follow-ups when the incidence
rate of the outcome is low (say, below 5%–10%): an asymptotically normal variance formula has been derived, and it
has been demonstrated that in most reasonable scenarios a follow-up with at most three visits is sufficient to obtain a
reasonable and more efficient estimate than the prospective design. Thus our design has a potential to be useful to rapidly
establish prognostic validity of a new imaging biomarkers within a reasonable time and with a smaller sample sizes for
rare clinical endpoints; we have demonstrated this through an application to the ADNI data. In this sense, it is a cost-
effective study design. While our design is devised having non-invasive imaging biomarkers primarily in mind, it can be
generalized to other biomarkers sharing the key features of no historical samples and rapid pace of development, e.g., mobile
biomarkers.

The time-homogeneous discrete-time Markov chain model that we have employed can be an oversimplification. For
example, subject-specific effects are difficult to model with the Markovian assumption. While we are aware of these
limitations of our model, it is a first-order approximation that can provide a reasonable initial estimation of odds ratios
within manageable time and size of the study for new imaging biomarkers. Naturally, an elaboration of the temporal
associationmodelwould be an intriguing futurework. For instance, the assumption of homogeneous transitions can be lifted
to incorporate the effect of aging, and the discrete-time model can be extended to continuous-time models. Nevertheless
the discrete-time aspect of our model is common in research studies as most often, the visits are scheduled in time
intervals. Although several changes of risk level may occur between follow-ups, we can minimize such possibilities by
assuming slow progression of the disease, which is true in AD and osteoporosis, and by an appropriate choice of time
window in the implementation of the design. Including subject-specific random effects via non-Markov models, e.g., semi-
Markov models, will be another interesting outlet for an extension of the Markov model. In any case, complete temporal
modeling without any assumption will not be possible due to identifiability problem, unless a prospective design is
used.

When we discretize continuous measurements, the cut-off values may change the number of subjects in each risk level.
While this may affect our design efficiency, such as how rare the high-risk patients are in the population, the main driving
factor is the event (disease) rate, which does not depend on the levels of risk. Discretization equally affects prospective
designs, and we seek for a relative merit over these designs rather than absolute superiority; for the continuous marker
considered in our AD example, we dichotomized the marker levels and found the impact of the binary cutoff value to the
final odds ratio estimate was minimal.

With further improvement of the model, e.g., for continuous levels and with age- or subject-dependent transition rates,
we are optimistic about the adaption of our design in future projects.
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Appendix. Proofs

A.1. Proof of Lemma 1

Note

nIctrl(θ) = Eθ


∂ lctrl
∂θ


∂ lctrl
∂θ

T


= Eθ

∂ l(CS)ctrl

∂θ


∂ l(CS)ctrl

∂θ

T
+ Eθ

∂ l(FU)ctrl

∂θ


∂ l(FU)ctrl

∂θ

T


+ Eθ

∂ l(CS)ctrl

∂θ


∂ l(FU)ctrl

∂θ

T
+ Eθ

∂ l(FU)ctrl

∂θ


∂ l(CS)ctrl

∂θ

T
 . (16)

The first term in (16) is the information matrix of n observations of the multinomial of L cells with cell probability
π (ctrl) = (π

(ctrl)
1 , . . . , π

(ctrl)
L )T , where

π
(ctrl)
j = π

(ctrl)
j (θ) =

f (θ)ej
f (θ)1

, j = 1, . . . , L,

for

f (θ) = (π
(0)
N )T (Λ̄PN)t0 .

Therefore

Eθ

∂ l(CS)ctrl

∂θ


∂ l(CS)ctrl

∂θ

T
 = n


∂π (ctrl)

∂θ


diag(π (ctrl))−1


∂π (ctrl)

∂θ

T

.

In order to evaluate ∂π (ctrl)j /∂θ , we first evaluate the matrix differential of f (θ) to see

df = (dπ (0)N )T (Λ̄PN)t0 +

t0−1
l=0

(π
(0)
N )T (Λ̄PN)l(dΛ̄)PN(Λ̄PN)t0−1−l

+

t0−1
l=0

(π
(0)
N )T (Λ̄PN)lΛ̄(dPN)(Λ̄PN)t0−1−l

after some algebra. In particular, we use the fact dΛ̄ = −dΛ and

d(An) = (dA)An−1
+ A(dA)An−2

+ · · · + An−1(dA) =

n−1
j=0

Aj(dA)An−j−1

for a square matrix A (we interpret A0
= I). Now note that

dΛ̄ = − diag

Λ̄11(1 − Λ̄11)dλ1, . . . , Λ̄pp(1 − Λ̄pp)dλp


=

L
j=1

Λ̄jj(Λ̄jj − 1)ejeTj dλj, (17)

dπ (0)N = Σ0dγ0, (18)

(dPT
N)j = Σjdγj, j = 1, . . . , L, (19)

(dPT
D)j = Σ̄jdγ̄j, (20)

with γ0 = (γ01, . . . , γ0,L−1)
T , γj = (γj1, . . . , γj,L−1)

T . Then in the evaluation of df ,

(dπ (0)N )T (Λ̄PN)t0 = dγ T
0 Σ

T
0 (Λ̄PN)t0 (21)

and
t0−1
l=0

(π
(0)
N )T (Λ̄PN)ldΛ̄PN(Λ̄PN)t0−1−l

=

t0−1
l=0

(π
(0)
N )T (Λ̄PN)l


L

j=1

Λ̄jj(Λ̄jj − 1)ejeTj dλj


PN(Λ̄PN)t0−1−l

=

L
j=1

dλjΛ̄jj(Λ̄jj − 1)
t0−1
l=0

(π
(0)
N )T (Λ̄PN)lejeTj PN(Λ̄PN)t0−1−l

= dλT Λ̄(Λ̄− I)Gt0(π
(0)
N , Λ̄PN , PN)x, (22)
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where

Gk(a, B, C) =



k−1
l=0

aTBl(e1eT1C)B
k−1−l

...
k−1
l=0

aTBl(eLeTL C)B
k−1−l

 =

k−1
l=0

diag(aTBl)CBk−1−l,

for a ∈ RL, B, C ∈ RL×L, and for any x ∈ RL,
t0−1
l=0

(π
(0)
N )T (Λ̄PN)lΛ̄(dPN)(Λ̄PN)t0−1−lx =

t0−1
l=0

aTl (dPN)bl (aTl = Λ̄(PT
NΛ̄)

lπ
(0)
N , bl = (Λ̄PN)t0−1−lx)

=

t0−1
l=0

vec(bTl (dP
T
N)al)

=

t0−1
l=0

(aTl ⊗ bTl ) vec(dP
T
N)

=

t0−1
l=0

(aTl ⊗ bTl )
L

j=1

vec(Σj(dΓ )ejeTj ) (Γ = mat(γ )) (23)

=

t0−1
l=0

L
j=1

vec(bTl Σj(dΓ )ejeTj al)

=

t0−1
l=0

L
j=1


(aTl eje

T
j )⊗ (bTl Σj)


vec(dΓ )

=

t0−1
l=0

dγ T
L

j=1


(ejeTj al)⊗ (ΣT

j bl)


= dγ T


L

j=1

(ejeTj ⊗ΣT
j )

t0−1
l=0

(al ⊗ bl)


(24)

= dγ T diag(ΣT
1 , . . . ,Σ

T
L )

t0−1
l=0


(Λ̄(PT

NΛ̄)
lπ
(0)
N · 1)⊗ ((Λ̄PN)t0−1−lx)


= dγ T diag(ΣT

1 , . . . ,Σ
T
L )

t0−1
l=0


(Λ̄(PT

NΛ̄)
lπ
(0)
N )⊗ (Λ̄PN)t0−1−l


x (25)

= dγ T diag(ΣT
1 , . . . ,Σ

T
L )Ft0(π

(0)
N , Λ̄PN , Λ̄)x, (26)

where

Fk(a, B, C) =

k−1
l=0


(aTBlC)T ⊗ Bk−1−l

=



k−1
l=0

aTBlCe1Bk−1−l

...
k−1
l=0

aTBlCeLBk−1−l

 ∈ RL2×L,

for a ∈ RL, B, C ∈ RL×L. In the derivation of (26), identity
vec(AXB) = (BT

⊗ A) vec(X)
is used multiple times. Eq. (23) is due to

vec(dPT
N) =

Σ1dγ1
...

ΣLdγL

 = diag(Σ1, . . . ,ΣL)dγ =

L
j=1

((ejeTj )⊗Σj) vec(dΓ ) =

L
j=1

vec(Σj(dΓ )ejeTj ).
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In (24) and (25), identity

(A ⊗ B)(C ⊗ D) = (AC)⊗ (BD)

is used. Collecting (21), (22), and (26), we see

df = [dλT , dγ T
0 , dγ

T
]

Λ̄(Λ̄− I)
ΣT

0
diag(ΣT

1 , . . . ,Σ
T
L )

Gt0(π
(0)
N , Λ̄PN , PN)
(Λ̄PN)t0

Ft0(π
(0)
N , Λ̄PN , Λ̄)

 , (27)

or

∂ f (θ)
∂θ

=


Λ̄(Λ̄− I)Gt0(π

(0)
N , Λ̄PN , PN)

ΣT
0 (Λ̄PN)t0

diag(ΣT
1 , . . . ,Σ

T
L )Ft0(π

(0)
N , Λ̄PN , Λ̄)

0

 .
It follows that

∂π
(ctrl)
j

∂θ
=
(f (θ)1)(∂ f (θ)/∂θ)ej − (f (θ)ej)(∂ f (θ)/∂θ)1

(f (θ)1)2

=
1

(π
(0)
N )T (Λ̄PN)t01


Λ̄(Λ̄− I)Gt0(π

(0)
N , Λ̄PN , PN)ej

ΣT
0 (Λ̄PN)t0ej

diag(ΣT
1 , . . . ,Σ

T
L )Ft0(π

(0)
N , Λ̄PN , Λ̄)ej

0



−
(π

(0)
N )T (Λ̄PN)t0ej

((π
(0)
N )T (Λ̄PN)t01)2


Λ̄(Λ̄− I)Gt0(π

(0)
N , Λ̄PN , PN)1

ΣT
0 (Λ̄PN)t01

diag(ΣT
1 , . . . ,Σ

T
L )Ft0(π

(0)
N , Λ̄PN , Λ̄)1

0



=

 Kλ
Kγ0
Kγ
0

 ej − π
(ctrl)
j

 Kλ
Kγ0
Kγ
0

 1 = Kej − π
(ctrl)
j K1

for j = 1, . . . , L. Thus

∂π (ctrl)

∂θ
= K − K1(π (ctrl))T .

Let

J1 =
∂π (ctrl)

∂θ
diag(π (ctrl))−1/2

= K diag(π (ctrl))−1/2
− K1(π̃ (ctrl))T ,

where π̃ (ctrl) = ((π
(ctrl)
1 )1/2, . . . , (π

(ctrl)
L )1/2)T . Then,

∂π (ctrl)

∂θ


diag(π (ctrl))−1


∂π (ctrl)

∂θ

T

= J1JT1

= K(diag(π (ctrl))−1
− diag(π (ctrl))−1/2π̃ (ctrl)1T

− 1(π̃ (ctrl))T diag(π (ctrl))−1/2
+ 1(π̃ (ctrl))T π̃ (ctrl)1T )K T

= K(diag(π (ctrl))−1
− 11T )K T

=

 Kλ
Kγ0
Kγ
0

D1

K T
λ K T

γ0
K T
γ 0


= V11.

The second term in (16) is the information matrix of n observations of the Markov chain with transition matrix P = P(θ)
for T steps, conditioning on the initial state frequencies of n1, . . . , nL. Thus

Eθ

∂ l(FU)ctrl

∂θ


∂ l(FU)ctrl

∂θ

T
 =


∂ vec(PT )

∂θ


nIctrl(P)


∂ vec(PT )

∂θ

T

,
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where Ictrl(P) is a 4L2 × 4L2 matrix so that

n(Ictrl(P))jk,gh = Eθ


Eθ


∂ l(FU)ctrl

∂pjk


∂ l(FU)ctrl

∂pgh

  n1, . . . , nL



= Eθ


Eθ


νjk − νjpjk

pjk
−
νj,2L − νjpj,2L

pj,2L


νgh − νgpgh

pgh
−
νg,2L − νjpg,2L

pg,2L

  n1, . . . , nL



=

nφj(1/pjk + 1/pj,min(L+j,2L)), if (j, k) = (g, h),
nφj/pj,min(L+j,2L), if j = g, k ≠ h,
0, otherwise,

with νj =
2L

k′=1 νjk′ and

φj =

L
k′=1

T
t=1

π
(ctrl)
k′ (P t−1)k′j,

using the fact

E(νjk − νjpjk|n1, . . . , nL) = 0

cov(νjk − νjpjk, νgh − νgpgh|n1, . . . , nL) =



T
t=1

L
k′=1

(nk′)(P t−1
kj )pjk(1 − pjk), (j, k) = (g, h),

−δig

T
t=1

L
k=1

(nk′)(P t−1
kj )pjkpgh, k ≠ h

for j, g = 1, . . . , 2L, and k, h = 1, . . . , 2L − 1 (Anderson and Goodman, 1957, Section 2). In matrix form,

Ictrl(P) = diag(I11(PN , Λ̄), I22(PD)),

I11(PN , Λ̄) = diag(φ1Ξ1, . . . , φLΞL), (28)
I22(PD) = diag(φL+1ΞL+1, . . . , φ2LΞ2L),

where

Ξj =


diag(diag(PT

NΛ̄ej)−1
+ (1/Λjj)11T ,OL) ∈ R2L×2L, j = 1, . . . , L,

diag

OL,


IL−1

0


(diag(PT

Dej)
−1

+ (1/(PT
D)jL)11

T )


IL−1

0


∈ R2L×2L, j = L + 1, . . . , 2L.

Now, from (17)–(20),

d vec(PT ) =

dλT dγ T

0 dγ dγ̄
T J1 0

0 0
J2 0
0 J3

 ,
where

J1 = diag(Λ̄11(Λ̄11 − 1)eT1[PN ,−I], . . . , Λ̄11(Λ̄11 − 1)eTL [PN ,−I]) ∈ RL×2L2

J2 = diag([Λ11Σ
T
1 ,O(L−1)×L], . . . , [ΛLLΣ

T
L ,O(L−1)×L]) ∈ RL(L−1)×2L2

J3 = diag([O(L−1)×L, Σ̄
T
1 ], . . . , [O(L−1)×L, Σ̄

T
L ]) ∈ RL(L−1)×2L2 .

Therefore

Eθ

∂ l(FU)ctrl

∂θ


∂ l(FU)ctrl

∂θ

T
 = n


J1I11JT1 0 J1I11JT2 0

0 0 0 0
J2I11JT1 0 J2I11JT2 0

0 0 0 J3I22JT3

 , (29)
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in which

J1I11JT1 = diag(φ1Λ̄
2
11(1 − Λ̄11)

2eT1PN(diag(P
T
NΛ̄e1)−1

+ (1/Λ11)11T )PT
Ne1, . . . ,

φLΛ̄
2
LL(1 − Λ̄LL)

2eTL PN(diag(P
T
NΛ̄eL)−1

+ (1/ΛLL)11T )PT
NeL)

= diag(φ1Λ̄
2
11(1 − Λ̄11)

2(eT1PN diag(PT
NΛ̄e1)−1PT

Ne1 + 1/(1 − Λ̄11)), . . . ,

φLΛ̄
2
LL(1 − Λ̄LL)

2(eTL PN diag(PT
NΛ̄eL)−1PT

NeL + 1/(1 − Λ̄LL))),

J2I11JT2 = diag(φ1Λ
2
11Σ

T
1 (diag(P

T
NΛ̄e1)−1

+ (1/Λ11)11T )Σ1, . . . ,

φLΛ
2
LLΣ

T
L (diag(P

T
NΛ̄eL)−1

+ (1/ΛLL)11T )ΣL)

= diag(φ1(1 − Λ̄11)
2ΣT

1 diag(PT
NΛ̄e1)−1Σ1, . . . , φL(1 − Λ̄LL)

2ΣT
L diag(PT

NΛ̄eL)−1ΣL),

J3I22JT3 = diag

φL+1Σ̄

T
1


IL−1

0


(diag(PT

De1)
−1

+ (1/(PT
D)1L)11

T )


IL−1

0


Σ̄1, . . . ,

φ2LΣ̄
T
L


IL−1

0


(diag(PT

DeL)
−1

+ (1/(PT
D)LL)11

T )


IL−1

0


Σ̄L


J1I11JT2 = diag


−φ1Λ̄11(1 −Λ11)

2eT1PN(diag(P
T
NΛ̄e1)−1

+ (1/Λ11)11T )Σ1, . . . ,

−φLΛ̄LL(1 −ΛLL)
2eTL PN(diag(P

T
NΛ̄eL)−1

+ (1/ΛLL)11T )ΣL

,

= diag

−φ1Λ̄11(1 −Λ11)

2((1/Λ̄11)1T
+ (1/Λ11)eT111

T )Σ1, . . . ,

−φLΛ̄LL(1 −ΛLL)
2((1/Λ̄LL)1T

+ (1/ΛLL)eTL 11
T )ΣL


= 0,

due to 1TΣj = 0 for j = 1, . . . , L. Thus the right hand side of (29) is equal to nV12.
The third and fourth terms in (16) vanish because

Eθ


∂ l(CS)ctrl

∂pjk


∂ l(FU)ctrl

∂pgh


= Eθ


∂ l(CS)ctrl

∂pjk


Eθ


νgh − νgpgh

pgh
−
νg,2L − νjpg,2L

pg,2L

  n1, . . . , nL


= 0 (30)

for j, g = 1, . . . , 2L, and k, h = 1, . . . , 2L − 1.

A.2. Proof of Lemma 2

Note

mIcase(θ) = Eθ


∂ lcase
∂θ


∂ lcase
∂θ

T


= Eθ

∂ l(CS)case

∂θ


∂ l(CS)case

∂θ

T
+ Eθ

∂ l(FU)case

∂θ


∂ l(FU)case

∂θ

T


+ Eθ

∂ l(CS)case

∂θ


∂ l(FU)case

∂θ

T
+ Eθ

∂ l(FU)case

∂θ


∂ l(CS)case

∂θ

T
 . (31)

The first term in (31) is the information matrix of m observations of the multinomial of Lt0 cells with cell probability
π (case) = ((π

(case)
·1 )T , . . . , (π

(case)
·t0 )T )T = (π

(case)
11 , . . . , π

(case)
L1 , . . . , π

(case)
1t0

, . . . , π
(case)
Lt0

)T , where

π
(case)
jt =

gt(θ)ej
g0(θ)1

, j = 1, . . . , L, t = 1, . . . , t0,

for

gt(θ) = (π
(0)
N )T (Λ̄PN)t−1ΛP t0−t

D , for t = 1, . . . , t0, g0(θ) =

t0
t=1

gt(α, β, π0).

Therefore

Eθ

∂ l(CS)case

∂θ


∂ l(CS)case

∂θ

T
 = m


∂π (case)

∂θ


diag(π (case))−1


∂π (case)

∂θ

T

.
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Similar to the case of ∂π (ctrl)/∂θ , we need to evaluate the matrix differential of gt(θ) in order to evaluate ∂π (case)jt /∂θ :

dgt = (dπ (0)N )T (Λ̄PN)t−1ΛP t0−t
D +

t−2
l=0

(π
(0)
N )T (Λ̄PN)l(dΛ̄)PN(Λ̄PN)t−2−lΛP t0−t

D − (π
(0)
N )T (Λ̄PN)t−1(dΛ̄)P t0−t

D

+

t−2
l=0

(π
(0)
N )T (Λ̄PN)lΛ̄(dPN)(Λ̄PN)t−2−lΛP t0−t

D +

t0−t−2
l=0

(π
(0)
N )T (Λ̄PN)t−1ΛP l

D(dPD)P
t0−t−1−l
D

= dγ T
0 Σ

T
0 (Λ̄PN)t−1P t0−t

D

+

L
j=1

dλjΛ̄jj(Λ̄jj − 1)


t−2
l=0

(π
(0)
N )T (P̄N)lejeTj (Λ̄PN)t−2−lΛP t0−t

D − (π
(0)
N )T (P̄N)t−1ejeTj P

t0−t
D



+ dγ T
L

j=1

(ejeTj ⊗ΣT
j )

t−2
l=0


(Λ̄(PT

NΛ̄)
lπ
(0)
N )⊗ (Λ̄PN)t−2−l


ΛP t0−t

D

+ dγ̄ T
L

j=1

(ejeTj ⊗ Σ̄T
j )

t0−t−1
l=0


((PT

D)
lΛ(PT

NΛ̄)
t−1π

(0)
N )⊗ P t0−t−1−l

D



= [dλT , dγ T
0 , dγ

T , dγ̄ T
] ·


Λ̄(Λ̄− I)

ΣT
0

diag(ΣT
1 , . . . ,Σ

T
L )

diag(Σ̄T
1 , . . . , Σ̄

T
L )



·



Gt−1(π

(0)
N , Λ̄PN , PN)Λ− diag((π (0)N )T (Λ̄PN)t−1)


P t0−t
D

(Λ̄PN)t−1ΛP t0−t
D

Ft−1(π
(0)
N , Λ̄PN , Λ̄)ΛP t0−t

D
Ft0−t(Λ(PT

NΛ̄)
t−1π

(0)
N , PD, I)

 ,
using (17)–(20). Thus

∂gt(θ)
∂θ

=


Λ̄(Λ̄− I)


Gt−1(π

(0)
N , Λ̄PN , PN)Λ− diag((π (0)N )T (Λ̄PN)t−1)


P t0−t
D

ΣT
0 (Λ̄PN)t−1ΛP t0−t

D
diag(ΣT

1 , . . . ,Σ
T
L )Ft−1(π

(0)
N , Λ̄PN , Λ̄)ΛP t0−t

D
diag(Σ̄T

1 , . . . , Σ̄
T
L )Ft0−t(Λ(PT

NΛ̄)
t−1π

(0)
N , PD, I)

 .

It follows that

∂π
(case)
jt

∂θ
=
(g0(θ)1)(∂gt(θ)/∂θ)P

t0−t
D ej − (gt(θ)P

t0−t
D ej)(∂g0(θ)/∂θ)1

(g0(θ)1)2

=
1

t0
t ′=1
(π

(0)
N )T (Λ̄PN)t

′−1Λ1


Λ̄(Λ̄− I)


Gt−1(π

(0)
N , Λ̄PN , PN)Λ− diag((π (0)N )T (Λ̄PN)t−1)


P t0−t
D ej

ΣT
0 (Λ̄PN)t−1ΛP t0−t

D ej
diag(ΣT

1 , . . . ,Σ
T
L )Ft−1(π

(0)
N , Λ̄PN , Λ̄)ΛP t0−t

D ej
diag(Σ̄T

1 , . . . , Σ̄
T
L )Ft0−t(Λ(PT

NΛ̄)
t−1π

(0)
N , PD, I)ej



−
(π

(0)
N )T (Λ̄PN)t−1ΛP t0−t

D ej t0
t ′=1
((π

(0)
N )T Λ̄PN)t

′−1Λ1
2

t0
t ′=1


Λ̄(Λ̄− I)


Gt ′−1(π

(0)
N , Λ̄PN , PN)Λ− diag((π (0)N )T (Λ̄PN)t

′
−1)

1

ΣT
0 (Λ̄PN)t−1Λ1

diag(ΣT
1 , . . . ,Σ

T
L )Ft ′−1(π

(0)
N , Λ̄PN , Λ̄)Λ1

diag(Σ̄T
1 , . . . , Σ̄

T
L )Ft0−t ′(Λ(PT

NΛ̄)
t ′−1π

(0)
N , PD, I)1



=


H(t)λ
H(t)γ0
H(t)γ
H(t)γ̄

 ej − π
(case)
jt


H(t)λ
H(t)γ0
H(t)γ
H(t)γ̄

 1 = Htej − π
(case)
jt Ht1
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for j = 1, . . . , L, t = 1, . . . , t0. Thus

∂π (case)

∂θ
=

H1 H2 · · · Ht0


−


H11(π

(ctrl)
·1 )T H21(π

(ctrl)
·2 )T · · · Ht01(π

(ctrl)
·t0 )T


= H − H diag(1(π (case)

·1 )T , . . . , 1(π (case)·t0 )T ).

Let

J2 =
∂π (case)

∂θ
diag(π (case))−1/2

= H diag(π (case))−1/2
− H diag


diag(π̃ (case)

·1 )−11(π (case)
·1 )T , . . . , diag(π̃ (case)·t0 )−11(π (case)·t0 )T


,

where π̃ (case)·t = ((π
(case)
1t )1/2, . . . , (π

(case)
Lt )1/2)T for t = 1, . . . , t0. Then,

∂π (case)

∂θ


diag(π (case))−1


∂π (case)

∂θ

T

= J2JT2

= H

diag(π (case))−1

− diag(π (case))−1/2 diag

diag(π̃ (case)

·1 )−11(π (case)
·1 )T , . . . , diag(π̃ (case)·t0 )−11(π (case)·t0 )T


− diag


π
(case)
·1 1T diag(π̃ (case)

·1 )−1, . . . , π
(case)
·t0 1T diag(π̃ (case)·t0 )−1


diag(π (case))−1/2

+ diag

(1T diag(π (case)

·1 )−11)π (case)
·1 (π

(case)
·1 )T , . . . , (1T diag(π (case)·t0 )−11)π (case)·t0 (π

(case)
·t0 )T


HT

=

Hλ
Hγ0
Hγ
Hγ̄

D2

HT
λ HT

γ0
HT
γ HT

γ̄


= V21.

The second term in (31) is the information matrix of m observations of the Markov chain with transition matrix
PD = PD(θ) for T steps, conditioning on the initial state frequencies of m1, . . . ,mL, where mj =

t0
t=1 mjt . Following (27),

we have

Eθ

∂ l(FU)case

∂θ


∂ l(FU)case

∂θ

T
 =


∂ vec(PT

D)

∂θ


mIcase(PD)


∂ vec(PT

D)

∂θ

T

,

where

Icase(PD) = diag(ψ1Ψ1, . . . , ψLΨL) ∈ RL2×L2

with

ψj =

L
k′=1

T
t=1

t0
τ=1

π
(case)
k′τ (P t−1

D )k′j,

and

Ψj =


IL−1

0


(diag(PT

Dej)
−1

+ (1/(PT
D)jL)11

T )


IL−1

0


∈ RL×L, j = 1, . . . , L.

for j, g = 1, . . . , L, and k, h = 1, . . . , L − 1. Now, from (17)–(20),

d vec(PT
D) =


dλT dγ T

0 dγ dγ̄
T 0

0
0
J4

 ,
where

J4 = diag(Σ̄T
1 , . . . , Σ̄

T
L ) ∈ RL(L−1)×L2 .

Therefore

Eθ

∂ l(FU)case

∂θ


∂ l(FU)case

∂θ

T
 = m

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 J4IcaseJT4

 , (32)
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in which

J4IcaseJT4 = diag

ψ1Σ̄

T
1


IL−1

0


(diag(PT

De1)
−1

+ (1/(PT
D)1L)11

T )


IL−1

0


Σ̄1, . . . ,

ψLΣ̄
T
L


IL−1

0


(diag(PT

DeL)
−1

+ (1/(PT
D)LL)11

T )


IL−1

0


Σ̄L


.

Thus the right hand side of (32) is equal tomV22.
The third and fourth terms in (31) vanish just as (30).
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