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Background

• In developing products for rare diseases, statistical challenges arise due to the limited
number of patients available for participation in clinical trials.

•A specific example motivating this research was the consideration of a pediatric trial
design testing the effect of a new drug for a rare genetic disease.

•Bayesian adaptive clinical trial designs offer the possibility of increased efficiency via
their incorporation of evidence from historical data, and flexibility in the specification
of interim looks.

Objectives

To develop Bayesian adaptive commensurate designs that borrows adaptively from
historical information and also uses a particular payoff function to optimize the
timing of the study’s interim analysis. Importantly, we also propose calibration
procedures to maintain acceptable long-run frequentist properties (Type I error and
power) for the designs.
•Historical information: In the case of pediatric trials, it was reasonable from a
clinical perspective to utilize information from adult populations.

•Commensurability: The primary endpoint used to measure the treatment effect and
that the magnitude of change in the primary endpoint would expect to be similar
between adults and children in both the placebo and treatment arms.

• Interim analysis: The interim analysis is desirable since the fixed sample size design
may require a sample size that is not realistic.

Notations

•Let nk be the sample size for the pediatric study in group k, where k = 1 is the placebo
group and k = 2 is the treatment group.

•Let n0k be the sample size for the two historical adult groups respectively. Since we will
typically have much more adult data than pediatric, we set n1 = n2 < n01 = n02.

•Let n ≡ n1 + n2 be the planned pediatric sample size if the trial runs to completion.
•The analysis prior uses a commensurate prior framework [1], and assumes

θk|θ0k ∼ N(θ0k, 1/τk), and θ0k ∼ N(0, σ2
0), k = 1, 2.

•Suppose we assume that Ykj and Y0kj, the observed percent reductions for each
pediatric and adult patient, are also normally distributed, that is,

Ykj
ind∼ N(θk, 1/ω) and Y0kj

ind∼ N(θ0k, 1/ω0)
•Early winner: If at the interim look, the probability that the novel treatment arm
(k = 2) is better exceeds some prespecified probability pU , i.e., if
P (θ2 > θ1|Data) > pU .

•Final winner: If, after all patients have been randomized and reported results, the
probability that the treatment arm is the best exceeds some prespecified probability p0,
i.e., if P (θ2 > θ1|Data) > p0.

•Early futility: If at the interim look, the probability that the novel treatment arm
(k = 2) is better than some prespecified minimally tolerable response rate θmin falls
below some prespecified probability pL, i.e., if P (θ2 > θmin|Data) < pL.

•Effective historical sample sizes (EHSS)

EHSSk = min
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where Prec(θk|D′) and Prec(θk|D′,D0) are the posterior precision of the pediatric
response in each group using both the pediatric data alone and the full model
(commensurate prior with adult historical data), where D′ and D0 denote the interim
pediatric and full adult data, respectively.

Proposed Approach

1 Fix θ1 = θ2 = 0, so that the null hypothesis is true (no difference in pediatric spleen
volume reduction between treatment and placebo). Generate Monte Carlo pediatric
observations Ykj, j = 1, . . . , n′k, k = 1, 2, and combine with the actual adult
observations Y0kj, j = 1, . . . , n0k, k = 1, 2.

2 Perform the interim analysis at the data, compute the effective historical sample sizes
(EHSSk) for k = 1, 2. Monitor the EHSS to ensure it is not unacceptably large.

3 Use the early winner and futility rules above to see if the trial can stop now; if so, write
this down and skip Step 4.

4 Generate the remaining pediatric observations Ykj, j = n′k + 1, . . . , nk, k = 1, 2, and
then use the “final winner" rule above to see if the trial can now choose a definite
winner.

5 Repeat Steps 2–4 Nrep times, and estimate the Type I error of our design. Grid search
on the choices of pL, pU , and p0 in the stopping rules for the study designs with the
desired test size (e.g., 5.0%).

6 Keep θ1 = 0 but change θ2 = 20 (or any known value meet the target efficacy), so that
now the alternative hypothesis is true (clinically significant improvement in pediatric
spleen volume reduction on treatment as compared to placebo). Repeat Steps 2–5
above, estimating the power of our design, and check if it is above the desired level
(e.g., 80.0%).

7 Rather than fix θ1 and θ2 as in Steps 1 and 6, repeatedly sample them from a
particular design prior, for example

θ1 ∼ N(θ1,des, σ
2
1,des) and θ2 ∼ N(θ2,des, σ

2
2,des) (1)

for the children where σ1,des and σ2,des are known, and set θ1,des = 0 and θ2,des = ∆.
In all cases, we repeat Steps 2–6 above again, estimating the marginal probabilities of
early stopping P̂ under our design prior, including early futility and early winner under
the design prior. The numerator (benefit) of the payoff function can be defined for
optimizing beneficial goals, i.e. to estimate the marginal probabilities of making correct
decisions at IA, define

P̂1 = # of early futility stops
Nrep

under H0 and P̂2 = # of treatment early winners
Nrep

under Ha .

(2)
Use these quantities to compute the trial payoff as

Payoff = wP̂1 + (1− w)P̂2

P̂ n′ + (1− P̂ )n
, (3)

where w ∈ (0, 1) is a preselected weight that trades off the two types of decisions in (2).
The denominator (cost) can be explained as the expected sample size of the study
design.

8 Repeat all the steps above (Steps 1–7) and choose the n′ value that maximizes the
Payoff as computed in equation (3). This n′ is optimal under design prior (1), and the
resulting design has correctly calibrated and acceptable Type I error and power.

Simulations

•To illustrate the method, we simulated the historical study data hypothetically from a
normal distribution with the endpoint being % reduction in spleen volume. The
historical study sample size are assumed to be n01 + n02 = 50. The simulated historical
data have mean difference ∆0 = 25 and corresponding standard deviation SD = 22. We
consider a current pediatric study with planned sample size of n1 + n2 = 40.

Simulation Results
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Figure: IA timing (%) vs Type I and Type
II error. We calibrate Type I error
(one-sided at the size of 5.0%) by grid
searching the suitable pU value and fix
p0 = 0.975 and pL = 0.25.

Table: EHSS borrowed from historical study at interim look
(Placebo/Treated)
IA time ∆ = 0 ∆ = 15 ∆ = 25 ∆ = 35
30% 19.86 / 10.11 19.94 / 17.75 20.09 / 20.17 20.01 / 17.62
40% 19.61 / 7.55 19.74 / 16.64 19.72 / 19.88 19.63 / 16.26
50% 19.25 / 5.73 19.35 / 15.30 19.42 / 19.49 19.31 / 15.11
60% 18.59 / 4.63 18.81 / 14.15 18.81 / 18.81 18.81 / 13.83
70% 18.18 / 3.91 18.29 / 12.85 18.22 / 18.32 18.14 / 12.65
80% 17.42 / 3.47 17.44 / 11.74 17.67 / 17.65 17.48 / 11.63
90% 16.73 / 3.08 16.68 / 10.66 16.96 / 16.94 16.76 / 10.79
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Figure: IA timing (%) vs Payoff. Each panel represents the values of payoff function with respect to different
weights w = 0, 0.5, 0.75, 1. IA timing under different design prior with effect size: 1) ∆ = 0, no efficacy, 2)
∆ = 15, at minimal efficacy, 3) ∆ = 25, high efficacy, and 4) ∆ = 35, surprised high efficacy.

Table: Optimal IA timing under different choices of design priors and choices of weights in the payoff

effect size w = 0 w = 0.5 w = 0.75 w = 1
0 32 (80%) 28 (70%) 20 (50%) 20 (50%)
15 32 (80%) 32 (80%) 28 (70%) 28 (70%)
25 32 (80%) 28 (70%) 28 (70%) 20 (50%)
35 28 (70%) 20 (50%) 20 (50%) 20 (50%)

Conclusions

1 We develop a Bayesian commensurate prior formulation to design a clinical trial
with an optimally placed single interim look.

2 Our findings suggest optimal IA times tended to be different from the optimal time
that minimized the expected sample size alone.

3 The optimIA R package provided an implementation of our approach is available
at https://github.com/wxwx1993/Bayesian_IA_Timing.
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