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1 | INTRODUCTION

The need for more efficient clinical trial methods continues to increase. Developers of new drugs and medical devices
are under increasing pressure to control development costs, especially in the clinical testing phase. In the US, regulators
at the Food and Drug Administration (FDA) have been motivated since December 2016 by the 21st Century Cures Act
and corresponding regulatory rule changes in the Prescription Drug User Fee Act (PDUFA) VI. These documents have
encouraged FDA to consider Phase IT and even Phase III applications that utilize novel statistical methods that borrow
from previous clinical data and perhaps even real-world evidence (RWE).!3

Bayesian clinical trial designs offer the potential advantages of reduced study sample size, increased statistical power,
and reductions in cost and ethical hazard.* In this paper, we propose a Bayesian adaptive statistical approach,’ imple-
mented using commensurate priors,* and utilizing a novel “payoff function” to select an optimal time to perform an
interim look at the data. Our Bayesian adaptive approach gets the most out of available data by (a) permitting borrowing

Abbreviations: BCI, Bayesian credible interval; EHSS, effective historical sample size; FDA, Food and Drug Administration; IA, interim analysis;
PDUFA, Prescription Drug User Fee Act; RWE, real-world evidence
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from adult data in our pediatric setting and (b) by allowing the study to terminate early (at the interim look) if the novel
treatment emerges as unequivocally better than placebo (“early win”) or fails to deliver some minimum level of efficacy
(“futility”). These features allow reduction of total trial duration, thus reduce cost and ethical hazard.

Statistically, adaptive trials are most easily implemented using a Bayesian framework (see, eg, the work of Berry et al®),
since it avoids problems with traditional p-values and “alpha-spending functions” (reviewed by, eg, Demets and Lan?),
instead directly computing the probability that each treatment is effective given the available data (a posterior probability
calculation). Bayesian procedures also more readily permit incorporation of external evidence (such as historical data and
expert opinion) when needed and appropriate.

A specific example motivating this research was the consideration of a pediatric trial design to test the effect of
an oral drug for Gaucher disease, a rare genetic disease belonging to the class of lysosomal storage disorders.® In
2014, FDA granted approval for this drug as a first-line treatment for adults with Gaucher disease type 1 who have a
CYP2D6 extensive, intermediate, or poor metabolizer phenotype based on two pivotal studies.®!° In particular, efficacy
in treatment-naive patients was demonstrated in the placebo-controlled ENGAGE trial,” which enrolled patients with
Gaucher disease type 1 who were at least 16 years of age, with the primary endpoint being reduction in spleen volume
(percent change from baseline). In order to extend the label to treatment-naive children (under age 16), a pediatric study
was needed. However, there were significant challenges in conducting an adequately powered placebo-controlled study
in the treatment-naive pediatric population, due to very slow expected enrollment, resulting in a high likelihood that
the trial will be unable to fully enroll enough patients to achieve acceptable power. We would also expect challenges to
pediatric patients (especially those assigned to placebo) in remaining compliant with the study protocol.

The questions raised by this example motivate us to consider an alternative, adaptive commensurate study design to
maximize the information available at an interim analysis (IA). This design cautiously borrows from the adult data when
appropriate and potentially stops the study after enrolling fewer patients without sacrificing statistical validity. In the case
of our pediatric study setting, it was reasonable from a clinical perspective to assume that the primary endpoint used to
measure the treatment effect in adult populations would still be appropriate for pediatric patients and that the magnitude
of change in the primary endpoint would likely be similar between adults and children in both the placebo and treatment
arms. In this situation, common to many pediatric study designs,'! the commensurate prior approach for incorporating
information from historical data'?1¢ can be useful.

The IA is highly desirable in the above example, since the fixed sample size design may require a sample size that is
not realistic, with the result that we cannot finish the study in a realistic period of time. On the other hand, although
the Bayesian method allows us to assess posterior probabilities of futility and efficacy continuously as the data accu-
mulate, due to the significant cost involved in cleaning and making the database available for IA, multiple IAs are not
desirable. Therefore, it is important to determine an optimal time to perform the single IA that provides the maximum
chance of making a correct early decision. Papers investigating the optimal placement of IAs do not appear plentiful
in the literature. The most popular optimal design in the clinical area is the Simon two-stage design,!” which mini-
mizes either the trial's expected or maximum sample size. However, the Simon design restricts to a binary response and
uses binomial probabilities to determine the optimal first- and second-stage sample sizes to maximize power subject to
Type I error constraints. Early stopping is permitted only for futility (not success), and the timing of the IA is also fixed
before data collection begins. Togo and Iwasaki'® proposed a method that seeks to minimize the total expected sample
size under a specified (continuous) treatment effect and find that, regardless of the effect size, the optimal time for a
single IA is at approximately 2/3 of the planned sample size for the O'Brien-Fleming-type and approximately 1/2 for
the Pocock-type alpha spending functions, where the expected sample sizes were calculated under a fixed treatment
effect as used for the study power. They also noted that, when the true effect size was better than or worse than the
planned treatment effect, the optimal time would be shifted. In practice, the timing of an IA for non-Bayesian type of
studies was typically chosen in the range of 40% to 60% of the total sample size based on number of patients needed
for safety assessment and enrollment estimation to allow potential saving with the early stopping. Yet, a goal of clinical
trials is often to seek to optimize the trade-off between costs (eg, the expected sample size) and benefits (eg, the cor-
rect early futility/efficacy decisions at IA), along with many other consideration that go beyond a standard sample size
calculation.?

The Bayesian paradigm is especially promising for constructing our adaptive framework, since it provides a unified
and interpretable language for data collection, inference, and decision making.?! Hampson et al'® offer a Bayesian design
that incorporates external information arising from expert opinion or historical data. However, the procedure relies on a
subjective expert determination regarding how much historical information to borrow. In addition, the design's adaptation
is only on the choice of the allocation ratio between two arms; there is no explicit IA proposed in their design. On the



WU BT AL WL EY-Statistics s

Bayesian side, the literature for investigating optimal IA timing is even sparser. A rare exception is the work of Huang and
Fu,?? who use simulation to estimate the optimal location of a single IA using a utility-based Bayesian adaptive design in
a particular dose-response setting. We hope the new Bayesian designs proposed in this paper can be soon applied in the
future clinical development program in the comparable situations.

The rest of our paper is organized as follows. Section 2 lays out the details of our Bayesian adaptive commensurate prior
approach, along with a step-by-step algorithm for its implementation. Section 3 then gives the results of an extensive sim-
ulation study to check our method's performance in the pediatric example setting. Our approach is able to obtain sensible
optimal look times that maximize a payoff function that is essentially measures the weighted conditional probability of
early stopping relative to the total sample size expected. Finally, Section 4 summarizes our findings and offers avenues
for future research, including alternate definitions of the payoff function.

2 | STATISTICAL METHODS AND ALGORITHMIC APPROACH

In our approach, we apply Bayesian methods with a commensurate prior to potentially stop a study at a single IA. We use
early futility and efficacy criteria based on Bayesian posterior probabilities of a treatment difference reaching prespecified
thresholds,® after adaptively borrowing information from historical adult study data, dependent on its similarity to data
from the current study. We calibrate our Bayesian procedures to have acceptable long-run frequentist properties (Type I
error and power) via computer simulation at the design stage.?* The optimal timing of the IA will be evaluated via simu-
lation by assessing a grid of plausible time points, among all decision criteria that meet certain Bayesian and frequentist
properties. This optimization is based on a payoff function that characterizes the benefit/cost ratio of the decision. The
proposed payoff function also introduces a weight parameter that allows expert input, including level of interest and/or
confidence on the new treatment, available budget, and the internal and external competitive environment.

To formalize ideas, let ny be the sample size for the pediatric study in group k, where k = 1 is the placebo group and
k = 2 is the treatment group. Let ngy be the sample size for the two historical (adult) groups, respectively. Since we will
typically have much more adult data than pediatric, in what follows, we set n; = n, < ng; = ng,. Let n = n; + n, be the
maximum total pediatric sample size if the trial runs to completion. We recommend selecting the maximum pediatric
sample size to achieve a reasonable power based on a clinically meaningful target treatment effect, in order to allow the
study to still have a good chance to achieve its objective in the least favorable case where no information at all can be
borrowed from the adult study data. We propose a trial with a single interim look, after n’ pediatric spleen reductions have
been observed. Let 6; be the mean % reduction in spleen volume for children in group k and 6 be the same quantities
for the two historical (adult) groups, respectively. O'Hagan and Stevens®* introduced the notion of using two different
prior distributions in clinical trial settings: a design prior, a more realistic choice used to evaluate the likely properties of a
design, and an analysis prior, a typically more conservative choice that will actually be used when the data are observed.
Consider the latter choice first; our analysis prior uses a commensurate prior framework* and assumes

Ok|60k ~ N(Oox, 1/7i), and O, ~ N (0,05) , k=1,2, 1)

where we assume 6 follows a vague prior for the adult percent spleen reductions, eg, 6o = 100 is known. The commen-
surability parameters (precisions) 7 are assigned independent hyperpriors, eg, the conjugate choices 7y ~ G(1/50, 1) as
relatively vague Gamma specifications.

Turning to the observed data, suppose we assume that Yj; and Yy, the observed percent reductions for each pediatric
and adult patient, are also normally distributed, that is,

ind

ind
Yi; '~ N6, 1/w) and Yoi; ~ N(for, 1/ @) » 2)

where the patient index j runs from 1 to ny or ngy, respectively, and we again use vague conjugate priors for w and wy; eg,
@, wo < G(1/100, 1).

We design and calibrate the trial to have acceptable long-run frequentist properties (Type I error and power) for any
given value of n’ and then select the value that maximizes trial payoff (as defined below). Also, our design uses one interim
look to check for early stopping due to success or futility, accounting for commensurability of the adult and pediatric data,
but does not consider adjusting the randomization ratio depending on how many adults we are “effectively” borrowing.
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Such an enhancement would be possible to add to our design.?>?¢ Finally, we note that either posterior or predictive
distributions can be used for these calculations. For simplicity, we use the former (implemented via Markov chain Monte
Carlo (MCMC) computation in BUGS, R/Stan or SAS) for our interim stopping rules as follows.

Early winner: If at the interim look, the probability that the novel treatment arm (k = 2) is better exceeds some

prespecified probability p, ie, if
P, > 61|Data) > py ,

then Arm 2 is declared the early winner and the trial is stopped early. We might take p;; be a fairly high
value, so early trial termination is permitted only when evidence for an early winner is overwhelming.?

Final winner: Early winner rules are typically paired with corresponding final winner rules, eg, if, after all patients have

been randomized and reported results, the probability that the treatment arm is the best exceeds some
prespecified probability p,, ie, if

P(92 > 01|Data) > Do,
then Arm 2 is declared the final winner. If however the treatment arm cannot meet this criterion, then

we do not make a final selection as to “best treatment” and merely summarize the performance of both
treatments. We might set p,, as a slightly less demanding threshold than the early winner level p;;.

Early futility: If atthe interim look, the probability that the novel treatment arm (k = 2) is better than some prespecified

minimally tolerable response rate i, falls below some prespecified probability p; , ie, if
P(0, > Onin|Data) < pr ,

then the trial is declared futile and is stopped early (ie, after just n’ patients). We might set 6, as the
minimum reduction in spleen volume from the novel treatment that can be clinically relevant) and take
p;. fairly small. Thus, if the treatment cannot muster at least a p; chance of a 0, % reduction in spleen

volume at our interim look, we will give up on the treatment and the trial is stopped early for futility.

Algorithm 1. In summary, our overall algorithm for given choices of n and n' is as follows.

1.

2.

Fix 6, = 0, = 0, so that the null hypothesis is true (no difference in pediatric spleen volume reduction between
treatment and placebo).

Use Equation (2) with a fix w to generate Monte Carlo pediatric observations Yy;, j = 1, ..., n;c, k = 1,2 and
combine with the actual adult observations Yoij,j =1, ..., noe, k =1, 2.

Perform the interim look at the data, estimating the posterior precision of the pediatric response in each group
using both the pediatric data alone and the full model (commensurate prior with adult historical data); namely,
Prec(0|D’) and Prec(6x|D’, Dy), where D' and Dy denote the interim pediatric and full adult data, respectively. If
posteriors are being computing using MCMC, these precisions would just be the reciprocals of the sample variances
of the G MCMC samples {Bl(cg), g=1, ..., G} forthe two groups and the two different models (interim pediatric only
vs full data).

Fork = 1, 2, compute the effective historical sample sizes (EHSSs)

) Prec(6;|D’, Do)
EHSS), = —= "% _1),0], ,
« = min <max [nok < Prec(0u D) Mok

so that EHSS, + EHSS, is the total EHSS.>> We recommend monitoring the EHSS to ensure it is not unacceptably
large; say, more than twice as large as n’, the interim pediatric sample size.

Such a check reflects a guideline that a regulatory authority such as the FDA might impose, requiring that a
significant proportion of the total information used in a pivotal trial comes from the trial data itself, not from histor-
ical information. Note that such restrictions could be imposed on EHSS, and EHSS, separately; eg, requiring more
caution when borrowing from historical cases as opposed to historical controls.?’”

Use the early winner and futility rules above to see if the trial can stop now; if so, write this down and skip the next step.
Use (2) with the same w in Step 2 to generate the remaining pediatric observations Yy;, j = n;{ +1,..,n k =
1,2, and then use the “final winner” rule above to see if the trial can now choose a definite winner. Note that this
approach is equivalent to using an appropriately sized Bayesian credible interval (BCI) for the pediatric treatment
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effect A = 0, — 0,. For example, with p, = 0.975, the equivalence would be a 95% equal-tail BCI: if it is totally above
0, conclude treatment is superior to placebo; if it is totally below 0, conclude treatment is inferior to placebo; and if
it contains 0, fail to conclude superiority of either treatment. The equivalence of p;; and p; to their corresponding
BClIs can be established, respectively.

7. Repeat Steps 2 to 6 Nyep times, and estimate the Type I error of our design as

# of treatment early winners + #of treatment final winners
Nrep .

(3)

Repeat Steps 2 to 6 and grid search on the choices of p;, py, and p, in the stopping rules for the study designs with
the desired test size (say, 5.0%).

8. Keep 0, = 0 but change 0, = 20 (or any known value meet the target efficacy), so that now the alternative hypoth-
esis is true (clinically significant improvement in pediatric spleen volume reduction on treatment as compared to
placebo). Repeat Steps 2 to 7 above, estimating the power of our design using Equation (3), and check if it is above
the desired level (eg, 80.0%). If the power is not above the desired level, we can alter the choices of p;, py, and p, in
the stopping rules and try again; however, to maintain the procedure’s Type I error calibration, we can only choose
Dy Dy and p, among the study designs with the desired test size obtained in Step 6. (Otherwise, if no design obtained
in Step 6 achieves the desired power, we might instead need to increase n or alter the hyperpriors on the . so that
more strength is borrowed from the historical adult data.)

9. Rather than fix 6, and 0, as in Steps 1 and 8, repeatedly sample them from a particular design prior, for example,

01~ N (01007 4o ) a0 02 ~ N (035,02, ) @)

for the children where 61 ges and 63 ges are known, and set 61 ges = 0 and 0, 4es = A. We again use the actual adult
observations, and to be realistic, we might set A smaller than the mean observed reduction in adults, to reflect the
plausible situation that the treatment offers a greater benefit to adults than it does to children.

In all cases, we repeat Steps 2 to 7 above again, estimating the marginal probabilities of early stopping P under
our design priov, including early futility and early winner under the design prior. The numerator (benefit) of the
payoff function can be defined under both the null hypothesis and alternative hypothesis for optimizing beneficial
goals (ie, to estimate the marginal probabilities of making correct decisions at 1A, including early futility under null
hypothesis and early efficacy under the alternative hypothesis separately). Define

5 #of early futility stops #of treatment early winners

p der Hyand P, = derH, . 5
1 Nee under Hj and P, Nee under H, 5)
Use these quantities to compute the trial payoff as
P +(1 - w)P

P+ -pPm

wherew € (0, 1) is a preselected weight that trades off the two types of decisions in (5).

The denominator (cost) can be explained as the expected sample size of the study design.

An alternative fully Bayesian payoff function computes the marginal probabilities of early stopping, early futility,
and early efficacy under the design prior. This redefines P, and P, as

#of early futility stops and P # of treatment early winners
== 2 —
Nrep N, rep

=

1 both under the design prior, (7)

now averaging over the design prior, and again use these quantities to compute the trial payoffin (6).

10. Repeat all the steps above (Steps 1 to 9) across a grid of n’ values. Choose the n’ value that maximizes the payoff as
computed in Equation (6). This n’ is optimal under design prior (4), and the resulting design has correctly calibrated
and acceptable Type I error and power by construction.
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We have created an R package, optimIA, available at https://github.com/wxwx1993/Bayesian_IA_Timing, to imple-
ment our algorithm. In the next section, we use the algorithm to determine the optimal timing for an IA in the context of
our pediatric study setting.

3 | SIMULATION STUDY

3.1 | Simulation settings

In our simulation study, we implement the Bayesian algorithm proposed in Section 2. To illustrate the method, we sim-
ulated the historical study data hypothetically from a normal distribution with the endpoint being % reduction in spleen
volume. The historical study sample size are assumed to be ny + ng; = 50, in which ng; = 25 are in the placebo group
and ng, = 25 are in the treated group. The simulated historical data have mean difference Ay = 25 and corresponding
standard deviation SD = 22. We consider a current pediatric study with planned sample size of 40 (n; = n, = 20 per
arm). This sample size will provide approximately 81.2% power (under one-sided 5.0% Type I error) to detect a target treat-
ment difference of H, : 6, — 6; = 20 without considering interim look or external evidence (ie, historical data borrowing
in this study). We consider potential IA times after ' = 0,4, 8,12, 16, 20, 24, 28, 32, 36, and 40 enrollments. We vary the
weight asw = 0,0.5,0.75, 1, to represent the considerations mentioned in Section 2. For example, with w = 0, the benefit
(numerator of the payoff function) will represent the probability of an early win when the true treatment effect is at the
target; stopping early for futility is deemed to have no value. In this case, the highest payoff will maximize the probabil-
ity of early success at IA when the drug is working (benefit), while controlling the expected sample size (cost). The use
of w = 0.5 will place equal weight on stopping early for a win and stopping early to give up on the drug, while w = 0.75
places heavier emphasis on earlier abandonment of an apparently ineffective drug. This may occurs if the external infor-
mation suggested less favorable profile of the drug or emergence of a new competitor drug make the new treatment less
desirable for further development. The use of w = 1 is extremely unlikely in practice as it will place no benefit on an early
win, and we present the outcome only for completeness.
We set the null hypothesis and target alternative hypothesis as, respectively,

Hy:0,—6,=0
and H, : 6, — 6, =20 .

We choose a minimal efficacy level of 0,;, = 15 for defining futility at the interim look. Under our design prior, we
consider four values of the mean treatment effect: A = 0, for scenarios in which we expect the new treatment will show
no improved efficacy; A = 15, for scenarios in which we expect the treatment will achieve minimal efficacy; A = 25, for
scenarios in which we expect the treatment will achieve the same high efficacy as the adult (historical) study; and finally,
A = 35, for surprising scenarios in which we expect the new treatment will achieve even higher efficacy than that seen
in the historical adult study. The number of replicates for calculating and calibrating the Type I errors and powers within
each simulation scenario is 5000. For each MCMC run, we specify a chain of 5000 iterations, with the first 20% of the
samples deleted as the initial “burn-in” period.

3.2 | Simulation results

Figure 1 shows our algorithm controls power at the level of 86.9% (86.9%-90.3%) when we calibrate the overall Type I
error (one-sided at 5%) by finding the suitable choice of p;; where we fix p, = 0.975 and p; = 0.25. This represents a
notable boost of power (at least 5.7%) compared to the standard frequentist method without historical data borrowing.
Figure 1 also shows the partition of the overall Type I error into that contributed by treatment early winners at IA and
that arising from final winners at FA (blue dashed and dotted lines, respectively). We see the component due to early
winners is elevated for later IA times, yet the overall Type I error is always controlled by construction. Table 1 shows the
amount of EHSS borrowed from the historical study under different design priors. Noting that, in general, we borrow
more placebo than the treated, since under the design prior, we tend to believe the placebo arms are similar between
adults and pediatrics, since they are both untreated and should have no reduction on spleen volume. Yet, the amount
of borrowing for treated arm highly depends on the specifications of design priors and true treatment effect; note, for
example, the extensive borrowing from the treated even for later IA times when A = 25 in Table 1. If, on the other hand,
we believe the effects of drug on children are quite different from those in adults (other values of A in the table), we tend
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8 errors. We calibrate Type I error (one-sided at the size of 5.0%) by
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° By choosing suitable stopping rules at the design stage, the Type II
- errors are also controlled at the level of 13.1% (9.7%-13.1%, which is
3 N\/TT equivalent to 86.9%-90.3% power. The blue dashed/dotted lines show
__~ PR ’ . the partition of overall Type I error into that due to treatment early
ol —mmmTTTTT T T e winners at IA and treatment final winners at final analysis (FA)
0O 10 20 30 40 5 6 70 8 90 100 throughout different IA times [Colour figure can be viewed at
IA timing (%) wileyonlinelibrary.com]
IA time A=0 A=15 A =25 A=35 TABLE 1 Effective historical sample sizes borrowed from
30% 19.86/10.11 19.94/17.75 20.09/20.17 20.01/17.62 historical study at interim look (placebo/treated) when the total
40% 19.61/7.55 19.74/16.64 19.72/19.88 19.63/16.26 historical sample size is 50 (25/25)
50% 19.25/5.73  19.35/15.30 19.42/19.49 19.31/15.11
60% 18.59/4.63  18.81/14.15 18.81/18.81 18.81/13.83
70% 18.18/3.91 18.29/12.85 18.22/18.32 18.14/12.65
80% 17.42/347 17.44/11.74 17.67/17.65 17.48/11.63
90% 16.73/3.08  16.68/10.66 16.96/16.94 16.76/10.79

to rely less on the historical data due to incommensurability. This is the reason that the borrowing from the treatment arm
is maximized at A = 25, which is the fully commensurate case here; for A = 35, treatment arm borrowing drops again to
levels comparable to that seen for A = 15. In addition, we observe the amount of borrowing decreases as the IA time goes
up. This is likely because later IA times cast greater doubt on commensurability. We also find the historical sample sizes
(HSSs) impact EHSS. Briefly, the borrowing proportions (EHSS/total HSS) tend to be higher for larger HSS. Additional
simulation results under different sizes of historical adult data sets are presented in Appendix A.1.

Figure 2 and Table 2 give our main results for payoff function defined in (5)-(6). Figure 2 presents the values of payoff
functions under different scenarios. It is clear that each estimated payoff curve has a maximal point, which can be inter-
preted as the optimal time for an TA. In general, we observe the optimal IA times using the specified payoff function are
within the range of recruiting 50% to 80% of patients, depending on the choices of design priors. One interesting perspec-
tive is that, when A = 15, in which we expect the treatment only achieves minimal efficacy, the study design provides
the latest IA time compared to other scenarios. This is not surprising as under this marginal case where the current study
achieves only minimal efficacy, more data (longer waiting time) is needed in order to make a clear decision regarding
early wins and losses.

That is, this is the case that is most difficult for our commensurate prior framework to handle, as the decision whether
or not to borrow is not clear-cut.

In contrast, under the surprised high efficacy scenario (A = 35), we observe the earliest optimal IA timing, reflecting
the investigator's high confidence in the treatment'’s effectiveness in the current pediatric trial. The no efficacy (A = 0)
and high efficacy (A = 25) scenarios provide roughly identical optimal IA timing, yet it is worth noting that the stopping
mechanisms of TA are different: under no efficacy, early futility dominates the IA decision, whereas under high efficacy,
the early stops are due to early winners.

Table 2 also illustrates the impact of the weight w on our pediatric study design. We see a trend towards earlier opti-
mal times when w is larger for all scenarios, which corresponds to our placing greater importance on early stopping for
futility. In practice, the choice of w is somewhat subjective and thus requires external information, probably from elicited
expert opinions.!® Extra caution needs to be paid in certain scenarios; eg, when the rates of change over IA time in the
probabilities of early win and early futility are very different, the choice of w may have larger impact on the optimal IA
timing. Results using the alternative, fully Bayesian payoff function (7) are presented in Appendix A.2.
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FIGURE 2 Interim analysis(IA) timing (%) vs payoff. Each panel represents the values of payoff function with respect to different weights
w =0,0.5,0.75, 1. IA timing under different design prior with effect size: (1) A = 0, no efficacy; (2) A = 15, at minimal efficacy; (3) A = 25,
high efficacy; and (4) A = 35, surprised high efficacy [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 2 Optimal interim analysis timing chosen under different Effectsize w=0 w=05 w=075 w=1

choices of design priors and choices of weights in the payoff 0 32(80%) 28(70%) 20(50%) 20 (50%)
15 32(80%) 32(80%) 28(70%) 28 (70%)
25 32(80%) 28(70%) 28(70%) 20 (50%)
35 28 (70%) 20(50%) 20(50%) 20 (50%)

Figure 3 plots the expected sample size for the implementations of our study under different design priors. Expected
sample size was defined as the expectation of sample size as we either conduct the TA and then stop, or conduct the IA and
then continue to recruit more patients until the completion of study. The finding is that the minimal expected sample size
appears if we conduct the IA when have recruited 40% to 50% patients. Our findings, under a Bayesian adaptive design,
shows the timing of minimizing expected sample size appears earlier than those shown in the work of Togo and Iwasaki,°
likely due to the information borrowed from the historical data. However, as demonstrated in Section 2, minimizing
the expected sample size is not necessary to be the only criterion for finding optimal IA timing. Rather, a view toward
maximizing a payoff function that characterizes the benefit/cost ratio is used in our Bayesian adaptive design. Under
the optimal IA timing obtained by maximizing our specified payoff function, 13.8% to 44.9% savings in expected sample
size were observed. This often outperforms the study designs presented by Togo and Iwasaki,'® which found 18% to 22%
savings in sample size with a single IA, even if the primary goal of our design is not to maximize savings in expected sample
size. Again, the reason is our Bayesian adaptive design effectively borrows from historical information. We also note that
our simulations reveal enormously larger Monte Carlo standard errors (SEs) associated with the expected sample size
estimation for early IA times (left side of Figure 3), yet the SEs shrink to 0 as IA time increases, reflecting the fact that
later IAs provide progressively more accurate estimation of cost as they progress toward full enrollment. The data tables
to construct Figures 1 to 3 are provided in Appendix A.3.
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FIGURE 3 Interim analysis (IA) timing (%) vs expected sample

Expected sample size (cost)
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1 1

size. Expected sample size was defined as the expectation of sample
© | - 2:? 5 size as we either conduct the IA and then stops or conduct the IA
—— A=25 and then continue to recruit patients until the completion of the
o4 A=35 study. Under the optimal IA timing obtained by maximizing our
0 0 20 30 40 5 60 70 8 9 100 specified payoff, 13.8%-44.9% saves of expected sample size were

IA timing (%) observed [Colour figure can be viewed at wileyonlinelibrary.com]

4 | DISCUSSION AND FUTURE WORK

In this paper, we have used a Bayesian commensurate prior formulation to design a clinical trial with an optimally placed
single interim look. Our goal was to move beyond simple optimality criteria that involve only overall expected sample
size to those that actually measure not just the savings resulting from persons not enrolled in the study, but gains to the
sponsor arising from making a correct decision as soon as possible. While the goal of an optimally designed clinical trial
is to be able to declare study success as soon as possible when the drug is working, it is also important to stop the trial as
soon as possible when the drug is not working. The use of weight in the payoff function allows the project team to assess
the relative importance of these two actions and reach to an ethical decision based on existing information. Also, since
the design has controlled both Type I and Type II errors overall, the proposed payoff function was intended to maximize
the chance of making a “weighted” correct decision as high as possible and as early as possible.

Our findings suggest optimal IA times tended to be different from the optimal time based on cost alone (when the
expected sample size is the smallest). The optimal time may be earlier when the treatment effect is unequivocal (either
very small or very large) or when greater importance is placed on early stopping for futility (higher w values). By contrast,
equivocal treatment effects (ie, close to those deemed minimally clinically significant) or a higher emphasis on early
stopping for efficacy (the “early winner”) lead to later optimal IA times.

Our payoff function (6) resulted from a hybrid of Bayesian and frequentist ideas, which we do not view as inappropriate
in a field where methods that are formally Bayesian but also required to have good frequentist properties are routinely
used. Unlike the existing methods which calculate cost only based on a fixed alternative hypothesis, the current estimate
of cost (denominator) based on different Bayesian prior allows a more realistic estimation of the cost. For an actual trial
design, the expected cost should be assessed under all possible scenarios (based on existing knowledge) to assess their
impact on optimal IA timing.

Still, while useful, our payoff function is fairly ad hoc, namely, through Equation (6) where P, =
(# of early futility stops)/Nrep is an estimate of the probability of an “early loss,” P, = (# of treatment early winners) /Nrep
is a corresponding estimate of the probability of an “early win,” P is the probability of early stopping for any reason, and
w € (0, 1) is a weight that trades off these two early stop probabilities.

Suppose we define two more Bayesian posterior probability estimates?

. 3
Py = # of treatment late winners and Py=1— Z P =
Nrep k=1

#of treatment late losers
N, rep )

Let us now think of gain and cost on a purely financial (ie, dollar) scale. Obviously, we would need help from the trial
sponsor to do this, but we could consider a range of possibilities. Define

Gain(early loss) = a;, Gain(late loss) = a, < ay,

and Gain(early win) = by, Gain(late win) = b, < b; .
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We might take a; = 0, so that the “gain” from a late loss a, is actually negative, corresponding to the financial loss
associated with having to postpone development of other drugs while we waited for this one to fail. Similarly, we would
surely take b; > 0, but would also take 0 < b, < by, due to the missed opportunity to sell the drug while we waited for the
trial to run to completion.

Next, let C be the trial's per-patient cost. Then, we would have Cost(early loss) = Cost(early win) = Cn’, and
Cost(late loss) = Cost(late win) = Cn, since patients cost the same regardless of whether we win or lose. Thus, the
Bayesian expected net gain for the trial is

E(Gain - COSt) = 131(11 +132b1 +133b2 +P4(12 - C[(Pl +P2)}'l, + (Pg +P4)l’l] .

Once again, we could choose the location of the IA to maximize this posterior expected net gain, instead of the payoff
function in (6). We hope such an investigation will be the subject of a future manuscript.
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APPENDIX

A.1 | Additional simulations for EHSSs

We change the total sample size (ng; + no,) of historical adult data sets from 50 to 20 and 100, to see the impact on EHSS.
We also experimented with keeping this total sample size at 50, but switching from an equal allocation between treated
and controls (ny; = ng; = 25) to unequal allocations, namely, ng; = 10,19, = 40 and ny; = 40,n9, = 10. The results
given in Tables A1-A4 indicate that, in general, we borrow more from the placebo than the treated group in all scenarios.
This is because, under the design prior, we tend to believe the placebo arms are similar between adults and pediatrics,
since they are both untreated and should thus have no reduction in spleen volume. However, the amount of borrowing
for the treated arm depends highly on the specifications of the design priors and the true treatment effect. The absolute
amount of borrowing (as measured by EHSS) is also sensitive to the total historical sample sizes (HSS), and the borrowing
proportions (EHSS/total HSS) also tend to be higher for larger HSS. In addition, the trend is that the amount of borrowing
decreases as the IA time goes up, which is sensible since later IA times cast greater doubt on commensurability.

IA time A=0 A=15 A =25 A =35 TABLE A1l Effective historical sample sizes borrowed from historical
30% 7.18/3.46 7.31/6.59 7.42/7.45 7.35/6.54 study at interim look (placebo/treated) when the (balanced) total historical
40%  6.57/2.40 6.80/5.86 6.83/6.91 6.74/5.72 sample size is 20 (10/10)

50% 5.84/1.66 6.03/4.99 6.17/6.18 6.06/4.95
60% 5.06/1.24 5.34/4.31 5.41/541 5.34/4.22
70% 4.51/0.94 4.76/3.71 4.79/4.84 4.73/3.63
80% 4.02/0.79 4.23/3.29 4.32/4.34 4.23/3.21
90% 3.68/0.64 3.84/2.91 3.97/3.93 3.83/2.89
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TABLE A2 Effective historical sample sizes borrowed from IA time A=0 A=15 A =25 A=35
historical study at interim look (placebo/treated) when the 30% 40.76/22.60 40.86/36.39 41.09/41.30 40.97/36.09
(balanced) total historical sample size is 100 (50/50) 40% 40.65/18.41 40.72/34.41 40.69/41.06 40.53/33.70

50% 40.53/15.33  40.62/32.14 40.67/40.81 40.54/31.70
60% 40.03/13.48 40.19/30.14 40.14/40.15 40.22/29.54
70% 40.07/12.36  40.08/27.82 39.85/40.04 39.88/27.65
80% 39.66/11.65 39.59/26.15 39.67/39.67 39.04/24.52
90% 39.17/10.93 39.14/24.24 39.28/39.20 38.41/22.84

TABLE A3 Effective historical sample sizes borrowed from historical IA time A=0 A=15 A =25 A=35
study at interim look (placebo/treated) when the (unbalanced) total 30% 7.50/15.20 7.55/28.09 7.62/32.32 7.57/27.87
historical sample size is 50 (10/40) 40%  7.17/10.95 7.27/26.19 7.24/31.97 7.21/25.62

50% 6.75/8.18  6.79/24.04 6.84/31.46 6.80/23.70
60% 6.22/6.58  6.30/22.17 6.34/30.60 6.30/21.66
70% 5.78/5.55 5.85/20.08 5.83/30.21 5.82/19.88
80% 5.30/4.99 5.34/18.42 5.40/29.54 5.34/18.24
90% 4.90/4.44 4.91/16.69 5.04/28.71 4.91/16.95

TABLE A4 Effective historical sample sizes borrowed from historical IA time A=0 A=15 A =25 A=35
study at interim look (placebo/treated) when the (unbalanced) total 30% 34.20/5.91 34.28/7.93 34.49/8.57 34.42/7.93
historical sample size is 50 (40/10) 40%  34.12/5.10 34.25/7.68 34.30/8.49 34.14/7.55

50% 34.08/4.36  34.23/7.29 34.30/8.33 34.18/7.23
60% 33.71/3.83 33.70/6.43 33.89/8.02 33.88/6.79
70% 33.70/3.35 33.34/5.98 33.63/7.72 33.57/6.34
80% 33.22/3.03 32.83/5.52 33.42/7.32 33.23/5.88
90% 32.71/2.72  32.12/5.14 32.26/6.45 32.78/5.52

w= w=0.5 w=0.75 w=1
N — A=0 24 — A=0 24 — A=0 24 — A=0
— A=15 — A=15 — A=15 — A=15
— A=25 — A=25 — A=25 — A=25
A=35 A=35 A=35 A=35
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FIGURE A1l Interim analysis (IA) timing (%) vs full Bayesian payoff. Each panel represents the values of payoff function with respect to
different weights w = 0, 0.5,0.75, 1. IA timing under different design prior with effect size: (1) A = 0, no efficacy; (2) A = 15, at minimal
efficacy; (3) A = 25, high efficacy; and (4) A = 35, surprised high efficacy [Colour figure can be viewed at wileyonlinelibrary.com]
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Effect size w=0 w=05 w=075 w=1 TABLE A5 Optimal interim analysis timing chosen under different
0 40 (100%)  20(50%) 20 (50%) 20 (50%) choices of design priors and choices of weights in the payoff
15 40 (100%) 40 (100%) 36 (90%) 28 (70%)
25 28 (70%)  28(70%) 28(70%)  0(0%)
35 20 (50%)  20(50%) 20(50%) 0(0%)

A.2 | Fully Bayesian payoff function

In this appendix, we include the simulation results for our fully Bayesian payoff function defined in (7). These results are
given in Figure Al and Table A5. Interestingly, although the shapes of payoff curves change dramatically, the optimal IA
times chosen by the two payoff functions are generally comparable. In particular, we still see the latest optimal IA times
when we expect the treatment to achieve only minimal efficacy, and the earliest optimal IA times when we expect very
high efficacy. Almost flat payoff curves are observed for the weight w = 0 under design prior corresponding to no efficacy,
and for the weight w = 1 under the design prior corresponding to high or very high efficacy. This is because, under such
scenarios, the payoff function only rewards the early stopping reason that is unlikely to happen (eg, under the design prior
with no efficacy, an early win would be very unusual).

A.3 | Additional data tables

We also include four tables (Tables A6-A9) that give detailed results from our simulation study under the four true states of
nature (A = 0, 15,25, and 35). Information from these Tables was used in the construction of the figures in the main paper.

TABLE A6 Results under surprised high efficacy design prior (A = 35). P; and P, are the marginal probabilities of early
futility under null hypothesis and early efficacy under alternative hypothesis, respectively. IA_stop represents the probability
of stopping the study at IA. p;;, p;, and p, are early winner rule, final winner rule, and early futility rule, respectively

IA time P P, IA_stop Typelerror Power Pu pL Do EHSS (placebo/treated)
0.00 0.16 0.03 0.07 0.051 0.869 0.998 0.250 0.975 21.19/20.75
4.00 0.26 0.05 0.14 0.049 0.869 0.998 0.250 0.975 20.78/20.29
8.00 042 013 0.37 0.051 0.876 0.998 0.250 0.975 20.32/18.94
12.00 0.56 0.22 0.56 0.050 0.879 0.998 0.250 0.975 20.01/17.62
16.00 0.65 0.40 0.79 0.048 0.882 0.996 0.250 0.975 19.63/16.26

20.00 0.74 0.52 0.90 0.052 0.885 0.994 0.250 0.975 19.31/15.11
24.00 0.79  0.60 0.94 0.048 0.892 0.994 0.250 0.975 18.81/13.83
28.00 0.84 0.71 0.98 0.051 0.899 0.990 0.250 0.975 18.14/12.65
32.00 0.87 0.79 0.99 0.051 0.901 0.986 0.250 0.975 17.48/11.63
36.00 0.90 0.85 1.00 0.050 0.903 0.982 0.250 0.975 16.76/10.79
40.00 0.91 0.90 1.00 0.050 0.901 0.976 0.250 0.975 15.80/9.86

TABLE A7 Results under high efficacy design prior (A = 25). P;, and P, are the marginal probabilities of early futility under
null hypothesis and early efficacy under alternative hypothesis, respectively. IA_stop represents the probability of stopping the
study at IA. py, p;, and p, are early winner rule, final winner rule, and early futility rule, respectively

IA time Py P, IA_stop Typelerror Power Py pL Po EHSS (placebo/treated)
0.00 0.16  0.03 0.06 0.051 0.869 0.998 0.250  0.975 21.14/20.93
4.00 0.26  0.05 0.09 0.049 0.869 0.998  0.250  0.975 20.76/20.61
8.00 042 013 0.21 0.051 0.876 0.998 0.250  0.975 20.40/20.16
12.00 0.56  0.22 0.34 0.050 0.879 0.998 0.250  0.975 20.09/20.17
16.00 0.65 0.40 0.56 0.048 0.882 0.996 0.250  0.975 19.72/19.88
20.00 0.74  0.52 0.70 0.052 0.885 0.994  0.250 0.975 19.42/19.49
24.00 0.79  0.60 0.76 0.048 0.892 0.994 0.250 0.975 18.81/18.81
28.00 0.84 0.71 0.86 0.051 0.899 0.990 0.250 0.975 18.22/18.32
32.00 0.87  0.79 0.93 0.051 0.901 0.986 0.250  0.975 17.67/17.65
36.00 0.90 0.85 0.96 0.050 0.903 0.982  0.250  0.975 16.96/16.94

40.00 091  0.90 0.97 0.050 0.901 0.976  0.250  0.975 16.04/16.15
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TABLE A8 Results under moderate efficacy design prior (A = 15). P; and P, are the marginal probabilities of early futility
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under null hypothesis and early efficacy under alternative hypothesis, respectively. IA_stop represents the probability of

stopping the study at IA. py;, p;, and p, are early winner rule, final winner rule, and early futility rule, respectively

IA time
0.00
4.00
8.00
12.00
16.00
20.00
24.00
28.00
32.00
36.00
40.00

TABLE A9

P,
0.16
0.26
0.42
0.56
0.65
0.74
0.79
0.84
0.87
0.90
0.91

P,
0.03
0.05
0.13
0.22
0.40
0.52
0.60
0.71
0.79
0.85
0.90

IA_stop
0.07
0.10
0.17
0.21
0.34
0.45
0.50
0.61
0.69
0.76
0.83

Type I error
0.051
0.049
0.051
0.050
0.048
0.052
0.048
0.051
0.051
0.050
0.050

Power
0.869
0.869
0.876
0.879
0.882
0.885
0.892
0.899
0.901
0.903
0.901

by
0.998

0.998
0.998
0.998
0.996
0.994
0.994
0.990
0.986
0.982
0.976

Py
0.250

0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250

Dby
0.975

0.975
0.975
0.975
0.975
0.975
0.975
0.975
0.975
0.975
0.975

EHSS (placebo/treated)
21.12/20.49
20.77/20.18
20.27/18.88
19.94/17.75
19.74/16.64
19.35/15.30
18.81/14.15
18.29/12.85
17.44/11.74
16.68/10.66
15.90/9.82

Results under no efficacy design prior (A = 0).P; and P, are the marginal probabilities of early futility under

null hypothesis and early efficacy under alternative hypothesis, respectively. IA_stop represents the probability of stopping the

study at IA. py, p;, and p, are early winner rule, final winner rule, and early futility rule, respectively

IA time
0.00
4.00
8.00
12.00
16.00
20.00
24.00
28.00
32.00
36.00

40.00

P,
0.16
0.26
0.42
0.56
0.65
0.74
0.79
0.84
0.87
0.90
0.91

P,
0.03
0.05
0.13
0.22
0.40
0.52
0.60
0.71
0.79
0.85
0.90

IA_stop
0.16
0.26
0.43
0.55
0.66
0.76
0.81
0.87
0.91
0.94
0.97

Type I error
0.051
0.049
0.051
0.050
0.048
0.052
0.048
0.051
0.051
0.050
0.050

Power
0.869
0.869
0.876
0.879
0.882
0.885
0.892
0.899
0.901
0.903
0.901

Py
0.998

0.998
0.998
0.998
0.996
0.994
0.994
0.990
0.986
0.982
0.976

pPL
0.250

0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250

Do
0.975

0.975
0.975
0.975
0.975
0.975
0.975
0.975
0.975
0.975
0.975

EHSS (placebo/treated)
21.03/19.29
20.76/18.30
20.25/13.78
19.86/10.11
19.61/7.55
19.25/5.73
18.59/4.63
18.18/3.91
17.42/3.47
16.73/3.08
15.85/2.93
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