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ABSTRACT
In the context of a binary treatment, matching is a well-established approach in causal inference. However,
in the context of a continuous treatment or exposure, matching is still underdeveloped. We propose an
innovative matching approach to estimate an average causal exposure-response function under the setting
of continuous exposures that relies on the generalized propensity score (GPS). Our approach maintains
the following attractive features of matching: (a) clear separation between the design and the analysis; (b)
robustness to model misspecification or to the presence of extreme values of the estimated GPS; (c) straight-
forward assessments of covariate balance. We first introduce an assumption of identifiability, called local
weak unconfoundedness. Under this assumption and mild smoothness conditions, we provide theoretical
guarantees that our proposed matching estimator attains point-wise consistency and asymptotic normality.
In simulations, our proposed matching approach outperforms existing methods under settings with model
misspecification or in the presence of extreme values of the estimated GPS. We apply our proposed
method to estimate the average causal exposure-response function between long-term PM2.5 exposure
and all-cause mortality among 68.5 million Medicare enrollees, 2000–2016. We found strong evidence of
a harmful effect of long-term PM2.5 exposure on mortality. Code for the proposed matching approach is
provided in the CausalGPS R package, which is available on CRAN and provides a computationally efficient
implementation. Supplementary materials for this article are available online.
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1. Introduction
In large-scale observational studies, estimating the causal effects
is challenging because: (a) the treatment (named exposure in
epidemiology) is often continuous in nature, and thus one has to
allow for flexible estimation of the exposure-response function
(ERF) on a continuous scale; (b) the exposure assignment is
not random, and thus we need to properly adjust for potential
confounders (i.e., pre-exposure covariates associated with both
exposure and outcome); and (c) in the presence of large datasets,
causal inference analyses can be computationally burdensome.

In our motivational example of air pollution epidemiology,
confounding adjustment is traditionally achieved by fitting a
multivariate regression model with the health outcome as the
dependent variable, air pollution exposure as an independent
variable, and many potential confounders as additional inde-
pendent variables (e.g., Di et al. 2017; Liu et al. 2019). It has
been well documented in the literature that traditional regres-
sion methods do not allow for a clear distinction between the
design and analysis stages, are susceptible to model misspecifi-
cation, offer limited sensitivity analyses tools to assess underly-
ing assumptions, and often their results cannot be interpreted
as causal effects (Rubin 2008). Researchers have advocated the
development and implementation of causal inference methods

CONTACT Xiao Wu xw2892@cumc.columbia.edu Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY.
Supplementary materials for this article are available online. Please go to www.tandfonline.com/r/JASA.

to inform air pollution policy (e.g., Goldman and Dominici
2019).

Under the potential outcomes framework for causal infer-
ence, the design stage (i.e., where we (a) define the causal
estimands and the target population, (b) implement a design-
based method such as matching or weighting to construct a
matched or weighted dataset, and (c) assess the quality of the
design using metrics such as covariate balance) and the analysis
stage (i.e., where we estimate the causal effects) are distinct
(Imbens and Rubin 2015). A common approach for confound-
ing adjustment in this framework is using the propensity score,
that is, the probability of a unit being assigned to a particular
level of a binary exposure, given the pre-exposure covariates.
Rosenbaum and Rubin (1983) introduced the idea of using
propensity scores to adjust for confounding in observational
studies under the potential outcomes framework. After this
seminal paper, several propensity score techniques, both for
estimation and implementation, have been developed to esti-
mate causal effects in observational studies (see Harder, Stuart,
and Anthony 2010 for a review). However, for the most part,
propensity score approaches have been developed in the context
of a binary exposure. To handle settings where the exposure
might have more than two levels, Joffe and Rosenbaum (1999)
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and Imbens (2000) have introduced the generalized propensity
score (GPS) for categorical exposures. Imbens (2000) proposed
an inverse probability of treatment weighting (IPTW) of GPS for
confounding adjustment. Although there is no natural analogue
for matching and subclassification for GPS, Lechner (2001) and
Yang et al. (2016) proposed alternative ways to estimate causal
effects using matching and subclassification in this categorical
exposure setting.

Hirano and Imbens (2004) extended the GPS to the contin-
uous exposure setting, and defined the GPS as a conditional
probability density function of the exposure given the pre-
exposure covariates. Hirano and Imbens (2004) proposed a
procedure to estimate the causal ERF in which the estimated
GPS is included as a covariate in the outcome model (i.e., GPS
adjustment). The validity of their approach relies on the assump-
tion that both the GPS model and the outcome model must
be specified correctly. Robins, Hernan, and Brumback (2000)
proposed a causal inference approach that relies on weighting
by the GPS and can also be used in the continuous exposure
setting. More specifically, they introduced marginal structure
models in which the causal parameters can be consistently esti-
mated using a class of IPTW estimators that relies on the GPS.
However, this approach also requires the correct specification
of both GPS and outcome models. To relax the parametric
modeling assumption of the GPS under the weighting frame-
work, the following authors Fong, Hazlett, and Imai (2018), Yiu
and Su (2018), Vegetabile et al. (2021), and Tübbicke (2022)
proposed various balancing approaches that directly optimize
certain features of the weights rather than explicitly modeling
the GPS. The distinction between balancing versus modeling
approaches in the context of weighting was reviewed by Chat-
topadhyay, Hase, and Zubizarreta (2020). Kennedy et al. (2017)
proposed a nonparametric doubly robust (DR) approach for
causal exposure-response estimation in the context of a con-
tinuous exposure. Additionally, Colangelo and Lee (2020) and
Semenova and Chernozhukov (2021) proposed double machine
learning (DML) approaches, which rely on the DR moment
functions, in the continuous exposure setting. They additionally
propose the use of cross-fitting via sample splitting to avoid
complexity restrictions and accommodate a wide class of mod-
ern regularized methods for the GPS and outcome models (see
Kennedy 2022 for a review). The DR estimator is a class of
the augmented IPTW estimator that is more robust to model
misspecification of either the GPS model or the outcome model
(Robins and Rotnitzky 2001; Bang and Robins 2005; Cao, Tsiatis,
and Davidian 2009). This approach, to produce consistent esti-
mation, only requires that either the GPS or the outcome model
are correctly specified. Yet, in observational studies, neither the
GPS model nor the outcome model is known and likely to
be correctly specified. Literature shows DR approaches often
perform unstably in finite sample scenarios when both the
models of the GPS and the outcome are misspecified and are
sensitive to extreme values of the estimated GPS (Kang and
Schafer 2007; Robins et al. 2007; Waernbaum 2012). In addition,
assessments of covariate balance are often not emphasized in DR
methods.

Matching methods, another class of popular causal inference
approaches in binary and categorical exposure settings (Rosen-
baum and Rubin 1983; Lechner 2001; Yang et al. 2016), have

the following attractive features: (a) clear separation between
the design and the analysis, improving the objectiveness of
causal inference (Ho et al. 2007; Rubin 2008); (b) robustness
to model misspecification and/or to the presence of extreme
values of the estimated GPS (Waernbaum 2012; Greifer and
Stuart 2021); (c) maintaining the unit of analysis intact and
creating an actual matched set, allowing for straightforward
assessments of covariate balance and additional sensitivity anal-
yses (Zubizarreta 2012; Stuart and Ackerman 2020). Yet, to
our knowledge, matching approaches have rarely been extended
and implemented in causal inference for continuous exposures.
The only exception is Zhang, Mackay, and Baiocchi (2020),
who proposed a non-bipartite matching approach to divide the
original dataset into subclasses by grouping units with sim-
ilar observed covariates. The authors then fitted an agnostic
parametric regression model with a fixed effect to each sub-
class in the continuous exposure setting, and developed the
randomization-based inferential procedure of a specific causal
parameter, derived from the regression coefficient of the afore-
mentioned parametric model. Zhang, Mackay, and Baiocchi
(2020) did not create a new matched dataset and did not estimate
the nonparametric ERF for a target population. Their approach
also does not rely on the GPS as a dimension reduction for
multi-dimensional covariates.

In this article, we develop a novel matching approach for
flexibly estimating a nonparametrically specified causal ERF of
a continuous exposure. We introduce a GPS matching frame-
work that jointly matches on both the estimated scalar GPS
and exposure levels to adjust for confounding bias. In Sec-
tion 2, we introduce identifiability assumptions and provide
identification results for a population average causal ERF. In
Section 3, we describe the GPS matching algorithm. In this sec-
tion, we also introduce measures of covariate balance under the
matching framework and a bootstrap inferential procedure for
uncertainty quantification. In Section 4, we provide theoretical
results showing that our proposed matching estimator attains
point-wise consistency and asymptotic normality. In Section 5,
via simulations, we demonstrate that the proposed matching
estimator has superior finite sample performances compared
to existing causal inference methods, under several data gen-
erating mechanisms. In Section 6, we estimate a causal ERF
relating long-term PM2.5 exposure levels to mortality in a large
observational administrative cohort constructed by 68, 503, 979
Medicare beneficiaries in the continental United States (2000–
2016). We conclude with a discussion in Section 7.

2. The Generalized Propensity Score Function

We use the following mathematical notation: let N denote the
study sample size. For each unit j ∈ {1, . . . , N}, let Cj denote
the pre-exposure covariates for unit j, which is characterized by
a vector (C1j, . . . , Cqj) of length q; Wj denote the observed con-
tinuous exposure for unit j, Wj ∈ W; Yobs

j denote the observed
outcome for unit j; and Yj(w) denote the counterfactual outcome
for unit j at the exposure level w. fWj|Cj(w|c), for all w ∈ W,
denote the assignment mechanism defined as the conditional
probability density function of each exposure level given the
pre-exposure covariates Cj = c. One target estimand is the
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population average causal ERF defined on the specific range of
the exposure levels w ∈ W, μ(w) = E{Yj(w)}.

Under the potential outcomes framework (Rubin 1974)
which was adapted to continuous exposures (Hirano and
Imbens 2004), we establish the following assumptions of
identifiability:

Assumption 1 (Consistency). For each unit j, Wj = w implies
Yobs

j = Yj(w).

Assumption 2 (Overlap). For all possible values of c, the con-
ditional probability density function of receiving any possible
exposure w ∈ W is positive: fWj|Cj(w|c) ≥ p for some constant
p > 0.

This assumption bounds the values of the GPS away from
zero. It guarantees that for all possible values of pre-exposure
covariates Cj = c, we will be able to consistently estimate
μ(w) for each exposure w without relying on extrapolation. This
assumption aligns with the positivity assumption of Kennedy
et al. (2017).

Condition 1 (Weak Unconfoundedness). The assignment mech-
anism is weakly unconfounded if for each unit j and for all
w ∈ W, in which w is continuously distributed with respect to
the Lebesgue measure on W; Wj ⊥⊥ Yj(w) | Cj.

Condition 1 refers to the fact that we do not require (condi-
tional) independence of potential outcomes, Yj(w), for all w ∈
W jointly, that is, Wj ⊥⊥ {Yj(w)}w∈W|Cj. Instead, we only
require conditional independence of the potential outcome,
Yj(w), for a given exposure level w. Most causal inference studies
using continuous exposures rely on this condition (Hirano and
Imbens 2004; Imai and Van Dyk 2004; Flores 2007; Galvao and
Wang 2015; Kennedy et al. 2017).

We now introduce Assumption 3, the Local Weak Uncon-
foundedness assumption, which is less stringent than Condi-
tion 1 defined above. We first define the caliper δ as the radius of
the neighborhood set for any exposure level w (i.e., [w − δ, w +
δ]). We specify δ as a constant for a given dataset with sample
size N, and we require δ → 0 as N → ∞. We provide details
on the practical considerations in the selection of δ in Section 3,
and theoretical considerations in Section 4.

Assumption 3 (Local Weak Unconfoundedness). The assignment
mechanism is locally weakly unconfounded if for each unit j and
all w ∈ W, in which w is continuously distributed with respect
to the Lebesgue measure on W, then for any w̃ ∈ [w − δ, w + δ],
f (Yj(w)|Cj, Wj = w̃) = f (Yj(w)|Cj), where we use f to denote
a generic probability density function.

The local refers to the fact that we focus on the conditional
independence I(Wj = w̃) ⊥⊥ Yj(w)|Cj, where the indicator
function I(·) is defined by an event {Wj = w̃} and w̃ is in the
neighborhood set [w − δ, w + δ] around w. This assumption is
mathematically weaker than Condition 1 and can be deduced
from Condition 1 as I(Wj = w̃) is measurable with respect
to the σ -algebra generated by Wj. Assumption 3 (together with
other assumptions of identifiability) is sufficient to identify our

causal estimand of interest. We would like our method to rely
on a minimal set of assumptions because a weaker assumption
is more plausible empirically, although we understand all of
these assumptions are unverifiable using observational data. We
give an example of a multi-valued exposure to provide some
intuition (see Example S.1 of the supplementary materials). We
do not attempt to argue that Assumption 3 is substantively
weaker than Condition 1, but that there may be some settings
in which Assumption 3 will be satisfied while Condition 1 will
not. Also, we find causal estimands defined in our paper and
in literature are, in general, identified under either assumption
(Imbens 2000; Hirano and Imbens 2004; Kennedy et al. 2017).

We follow the generalization of the propensity score from
binary exposure to continuous exposure as proposed by Hirano
and Imbens (2004).

Definition 1. The generalized propensity scores are the condi-
tional probability density functions of the exposure given pre-
exposure covariates : e(c) = {fWj|Cj(w|c), ∀w ∈ W}. The
individual generalized propensity score e(w, c) = fWj|Cj(w|c)
is called an evaluation of e(c) at Wj = w.

It is natural to couple Assumption 3 with the following
smoothness assumption, which has been used in models with
counterfactual outcomes (Kim et al. 2018).

Assumption 4 (Smoothness). For each unit j and any w ∈ W, (1)
e(w, c) is Lipschitz continuous with respect to w for all c, and
(2) μgps(w, e) ≡ E[Yj(w)|e(Wj, Cj) = e, Wj = w] is Lipschitz
continuous with respect to w for all e. That is, ∀ w, w′ ∈ W,
|e(w, c) − e(w′, c)| ≤ A|w − w′|, ∀ c, for some constant A,
and |μgps(w, e) − μgps(w′, e)| ≤ B|w − w′|, ∀ e, for some
constant B.

The following Lemmas show that (a) the local weak uncon-
foundedness holds when we condition on the GPS, and (b) the
population average causal ERF is identifiable under Assump-
tions 1–4.

Lemma 1 (Local Weak Unconfoundedness Given GPS). Suppose
the assignment mechanism is locally weakly unconfounded.
Then for each unit j, all w ∈ W and w̃ ∈ [w − δ, w + δ],
f {Yj(w)|e(w̃, Cj), Wj = w̃} = f {Yj(w)|e(w̃, Cj)}, where we use f
to denote a generic probability density function.

Lemma 2 (Average Causal ERF). Suppose Assumptions 1–4
hold. Then for all w ∈ W,

μ(w) = E[Yj(w)]
= lim

δ→0
E
[
E{Yobs

j |e(Wj, Cj), Wj ∈ [w − δ, w + δ]}].

Lemma 1–2 state that, under the local weak unconfounded-
ness assumption, the population average causal ERF is identifi-
able (Hirano and Imbens 2004). Importantly, we can estimate,
for each exposure level w, the population average ERF by aver-
aging over a set of conditional expectations of observed out-
comes conditioning on a scalar GPS, e(Wj, Cj), and exposure
Wj ∈ [w − δ, w + δ], that is, E{Yobs

j |e(Wj, Cj), Wj ∈ [w −
δ, w + δ]}. It shows that the GPS is able to provide a dimension
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reduction from multi-dimensional potential confounders to a
scalar function even under continuous exposure settings. The
proofs of both Lemmas are presented in the supplementary
materials.

3. Matching Framework

3.1. GPS Matching Algorithm

In a completely randomized experiment, study units are ran-
domized to receive different exposure levels, and therefore units
assigned to different levels of exposures will have similar distri-
butions of their pre-exposure covariates (i.e., they will be bal-
anced). In observational studies, because units are not random-
ized to different exposure levels, their pre-exposure covariates
might be imbalanced, and this can lead to confounding bias. The
goal of matching is to create a new dataset where the distribution
of pre-exposure covariates across different exposure levels is as
balanced as possible. When the exposure is binary, this can be
achieved by pairing an exposed unit with an unexposed unit that
has nearly identical values of pre-exposure covariates and/or of
the estimated propensity score. When the exposure is contin-
uous, there is no explicit way to distinguish units as exposed
versus unexposed, and thus a different matching procedure is
needed.

We provide details of our proposed GPS matching approach
when the exposure is continuous; see Algorithm 1 for details.
Briefly, we first specify a caliper δ and create L equally sized
disjoint bins of exposure values [w(l)−δ, w(l)+δ], l = 1, 2, . . . , L.
For each l, we create a new set of hypothetical units j′ =
1, 2, . . . , N with observed covariate values cj′ (cj′ = cj if j′ = j)
but we fix their exposure level at w(l). We call these hypothetical
units template units. Our goal is, for each exposure bin l and
for each template unit j′, to impute the L × N missing potential
outcomes Yj′(w(l)). To achieve this, for each l and then for each
j′, we need to find a matched observed unit j such that: (a) unit j
has observed exposure wj that belongs to the bin l; and (b) unit
j is the nearest neighbor of the template unit j′ with respect to
a two-dimensional metric (e.g., Manhattan L1 distance) on the
exposure level and the estimated GPS, on a standardized scale.
We denote this newly matched observed unit j as jgps(e(l)

j′ , w(l)).
Then for each (l, j′) we impute the missing potential outcomes as
Ŷj′(w(l)) = Yobs

jgps(e(l)
j′ ,w(l))

. We allow matching with replacement:

observed unit j can be used as a match for multiple template
units (see Figure S.1 of the supplementary materials for an
illustrative example).

Throughout the GPS matching algorithm, decisions need
to be made about different elements of the proposed method,
including the specification of the GPS model, the distance met-
rics, the hyperparameters (δ, λ), the measures used to assess
covariate balance in the design stage, and the types of the non-
parametric estimator for exposure-response estimation in the
analysis stage. In Sections 3.2–3.3 we provide guidelines on how
to make these choices. In Section 3.2, we introduce two covariate
balance measures. In Section 3.3, we provide details on how to
select the hyperparameters (δ, λ). We also provide an R package,
CausalGPS, available on CRAN, to implement Algorithm 1.
The package uses OpenMP (Open Multi-Processing) to sup-

Algorithm 1 GPS Matching Algorithm
(a) Design Stage:

(1) We fit a GPS model e(w, c) on the observed data,
{(w1, c1), (w2, c2), . . . , (wN , cN)}, using either a para-
metric model (e.g., a parametric linear regression
model) or a nonparametric model (e.g., a flexible
ensemble learning model). We denote by ê(wj, cj) the
estimated GPS for an arbitrary unit j having expo-
sure wj and covariate cj. We denote min(w) =
minj∈{1,2,...,N} wj and max(w) = maxj∈{1,2,...,N} wj;
min(ê) = minj∈{1,2,...,N} ê(wj, cj) and max(ê) =
maxj∈{1,2,...,N} ê(wj, cj). Let w∗ and e∗ represent the
standardized Euclidean transformation of quantities w
and e, that is, for any (w, e) ∈ R × R+, w∗ =

w−min(w)
max(w)−min(w)

, e∗ = e−min(ê)
max(ê)−min(ê) .

(2) We specify a caliper δ and we define a predetermined
set of exposure levels w(l) which are the mid points of L
equally sized bins, [w(l) − δ, w(l) + δ]. More specifically,
{w(1) = min(w) + δ, w(2) = min(w) + 3δ, . . . , w(L) =
min(w) + (2L − 1)δ}, where L = �max(w)−min(w)

2δ
+ 1

2.
(3) For each l, we create template units j′ = 1, 2, . . . , N

with observed covariate values cj′ and fixed exposure
level w(l). For each l and for each j′, we create a matched
dataset of dimension L × N of imputed values of the
missing potential outcomes Yj′(w(l)). More specifically,
we implement a nested-loop algorithm, with l in
1, 2, . . . , L as the outer-loop, and j′ in 1, . . . , N as the
inner-loop.
for l = 1, 2, . . . , L do

Choose one exposure level w(l) ∈
{w(1), w(2), . . . , w(L)}.
for j′ = 1, 2, . . . , N do

(3.1) We fix the template unit j′ to have exposure w(l)

and evaluate the GPS at (w(l), cj′), denoted by e(l)
j′ ,

based on the fitted GPS model in Step 1.
(3.2) We implement the matching to

find an observed unit j, denoted by
jgps(e(l)

j′ , w(l)), such that jgps(e(l)
j′ , w(l)) =

arg min
j:wj∈[w(l)−δ,w(l)+δ]

||(λê∗(wj, cj), (1 − λ)w∗
j ) −

(λe(l)∗
j′ , (1−λ)w(l)∗)||, where ||.|| is a pre-specified

two-dimensional metric, λ is the scale parameter
assigning weights to the corresponding two
dimensions (i.e., the GPS and the exposure) and
λ ∈ [0, 1], and δ is the caliper defined in Step 2.

(3.3) We impute Yj′(w(l)) as Ŷj′(w(l)) = Yobs
jgps(e(l)

j′ ,w(l))
.

end for
Note: We allow multiple matches of an observed unit j

to different template units j′ throughout the inner-loop
j′ in 1, . . . , N (“matching with replacement”).
end for

(4) After implementing the algorithm in Step 3, we con-
struct the matched dataset with N ×L units by combin-
ing all {Yobs

jgps(e(l)
j′ ,w(l))

, wjgps(e(l)
j′ ,w(l))

, cjgps(e(l)
j′ ,w(l))

} for j′ =
1, 2, . . . , N for all l = 1, 2, . . . , L.
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Algorithm 1 GPS Matching Algorithm (continued)
(5) We assess covariate balance for the matched dataset. If

the covariate balance assessment is passed, proceed to
the analysis stage, else, rerun steps 1–4 with different
specifications. The details of covariate balance assess-
ment are provided in Section 3.2.

(b) Analysis Stage:

(6) We compute the estimated quantity of interest
μ̂gps(w(l)) = Ê[Yj(w(l))] = 1

N
∑N

j′=1 Yobs
jgps(e(l)

j′ ,w(l))
at the

predetermined exposures w(l), for l = 1, 2, . . . , L.
(7) We estimate a smoothed average causal ERF. The point-

wise matching estimator μ̂gps(w(l)) in Step 6 can be
regarded as a nonparametric estimator with a rectan-
gular kernel. The resulting curve may not be smooth.
To improve the smoothness of the curve, we intro-
duce kernel smoothing by either (1) fitting a kernel
smoother on the entire matched set constructed in
Step 4 to obtain a smoothed average ERF μ̂

(2)
gps(·) or

(2) replacing the rectangular kernel in μ̂gps(·) with
an Epanechnikov/Gaussian kernel to obtain μ̂

(2)
gps(·).

Note the smoothed estimator μ̂
(2)
gps(w) can be evalu-

ated at any exposure level w ∈ [min(w), max(w)],
rather than at the L predetermined exposure levels
{w(1), w(2), . . . , w(L)}, given the extrapolation of kernel
smoothing.

port multi-platform shared-memory multiprocessing program-
ming, and thus provides a computationally-scalable solution
to handle datasets with millions of observations. Algorithm 1
collapses to the propensity score matching proposed in Abadie
and Imbens (2006) under binary exposure setting, and to the
GPS matching proposed in Yang et al. (2016) under categorical
exposure setting if we force the set of exposure levels w(l) to
each be equal to discrete exposure levels (e.g., in the binary
exposure setting, force w(1) = 0 and w(1) = 1), and set
(δ, λ) = (0, 1) afterwards. In Section S.5 of the supplemen-
tary materials, we propose a modified bootstrap procedure,
named m-out-of-n bootstrap, to estimate the variance of the
GPS matching estimator. In Section S.6 of the supplementary
materials, we discuss the computational effort of the proposed
algorithm.

3.2. Covariate Balance

The goal of covariate balance assessment is to check the degree
to which the distribution of observed pre-exposure covariates is
similar across all exposure levels (i.e., the balancing condition).
We introduce two new measures to assess covariate balance
in the design stage; absolute correlation and block absolute
standardized bias (BASB) for continuous exposures. The abso-
lute correlation between the exposure and each pre-exposure
covariate is a global measure and can inform whether the whole
matched set is balanced. The BASB is a local measure that
informs whether a specific exposure block is balanced or not.

For the BASB, we estimate differences in means (and associated
standard deviations) for each pre-exposure covariate between
wj ∈ Wk v.s. wj /∈ Wk, where we categorize the exposure range
W = [min(w), max(w)] into K blocks Wk, k = 1, 2, . . . , K.
The block refers to the fact that the absolute standardized bias
is calculated for Wj in the block Wk. The measures above
build upon the work by Fong, Hazlett, and Imai (2018) and
Austin (2018) who examine covariate balance conditions with
continuous exposures under a weighting framework. We adapt
them into the GPS matching framework.

Formally, we define {w(1) = min(w), w(2) = min(w) +
max(w)−min(w)

K , . . . , w(K+1) = max(w)} ∈ [min(w), max(w)],
where K is the number of blocks; and we have Wk =
[w(k), w(k+1)]. For example, the exposure range is categorized
by quintile when K = 5. Let rk denote the number of
units within the block Wk. Suppose the ith unit in the kth
block Wk has exposure wik and q-dimensional pre-exposure
covariates cik, and appears nik times in the matched dataset.
We centralize and orthogonalize the covariates cik and the
exposure wik as c†

ik = S−1/2
c (cik − c̄ik), w†

ik = S−1/2
w (wik −

w̄ik), where c̄ik = ∑K
k=1

∑rk
i=1 nikcik/

∑K
k=1

∑rk
i=1 nik, Sc =∑K

k=1
∑rk

i=1 nik(cik − c̄ik)(cik − c̄ik)
T/

∑K
k=1

∑rk
i=1 nik, wik =∑K

k=1
∑rk

i=1 nikwik/
∑K

k=1
∑rk

i=1 nik and Sw = ∑K
k=1

∑rk
i=1 nik

(wik − w̄ik)(wik − w̄ik)
T/

∑K
k=1

∑rk
i=1 nik.

Global Measure. Based on the balancing condition, the cor-
relations between the exposure and pre-exposure covariates
should, on average, be equal to zero if covariate balance is
achieved. We assess covariate balance in the matched dataset
as

∣∣ ∑K
k=1

∑rk
i=1 nikc†

ikw†
ik
∣∣ < ε1, in which the q-dimensional

vector ε1 indicates pre-specified thresholds, for example, ε1 =
(0.1, 0.1, . . . , 0.1︸ ︷︷ ︸

q-dimensional

) (Zhu, Coffman, and Ghosh 2015). The pre-

specified ε1 serves as a practical guideline, whereas covariate
balance measures should be minimized where possible (Imai,
King, and Stuart 2008).

Local Measure. Based on the balancing condition, any expo-
sure block k should, on average, have zero BASB if covariate bal-
ance is achieved. We assess the covariate balance between units
with exposure levels within the block Wk and outside of this

block in the matched dataset as
∣∣∑rk

i=1 nikc†
ik∑rk

i=1 nik
−

∑
k′ �=k

∑rk′
i=1 nik′ c†

ik′∑
k′ �=k

∑rk′
i=1 nik′

∣∣ <

ε2, in which the q-dimensional vector ε2 indicates pre-specified
thresholds, for example, ε2 = (0.2, 0.2, . . . , 0.2︸ ︷︷ ︸

q-dimensional

) (Harder, Stuart,

and Anthony 2010).
Researchers can also specify covariate balance measures that

average over all q observed pre-exposure covariates. The average
absolute correlation is defined as the average of absolute corre-
lations of all q observed pre-exposure covariates. Similarly, the
average BASB is defined as the average of absolute standardized
bias of all q observed pre-exposure covariates for each block
k: (a) Average absolute correlation:

∣∣ ∑K
k=1

∑rk
i=1 nikc†

ikw†
ik
∣∣;

(b) Average BASB:
∣∣∑rk

i=1 nikc†
ik∑rk

i=1 nik
−

∑
k′ �=k

∑rk′
i=1 nik′ c†

ik′∑
k′ �=k

∑rk′
i=1 nik′

∣∣, for k =
1, 2, . . . , K, where V indicates the mean across the elements
of vector V .
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3.3. Selecting the Hyperparameters (δ, λ)

As detailed in Algorithm 1, the hyperparameters δ and λ need
to be specified. Intuitively, (a) the caliper δ should be relatively
small so that the matched observed unit j is ensured to have
an exposure wj that is close to the exposure level w(l) of the
template unit j′ ; (b) the scale parameter λ should be close to
1 so that the observed unit j is a good match to the template unit
j′ with respect to the GPS, and thus potentially achieving the
desired covariate balance in the matched dataset (Flores 2007).
Furthermore, δ should depend on the sample size N to align
with asymptotic results of the matching estimator in Section 4.
Although there is no absolute restriction on the caliper size,
the practical guideline of determining the caliper size is similar
to the bandwidth selection procedure for kernel smoothing
methods (i.e., conduct a grid search among a candidate set
of reasonably small δ and choose the optimal hyperparameter
based on a pre-specified criterion).

Selecting λ = 1 is a practical solution motivated by empirical
evidence when δ is properly selected a priori and computational
resources are restricted. Yet, the choice of both hyperparameters
may depend on data, and researchers may have no prior infor-
mation on how to choose hyperparameters. Setting an overly
small δ may result in no feasible match; whereas, for some larger
δ, there may be scenarios in which multiple observed units are
qualified for a match and we want to choose one among them
based on covariate balance measures. Also, setting λ = 1 does
not always result in optimal covariate balance if the caliper δ

varies at the same time.
We introduce a data-driven approach to select the hyper-

parameters (δ, λ) simultaneously aiming at achieving optimal
covariate balance. The optimal (δ, λ) could be specified by opti-
mizing a utility function that measures the degree of covariate
balance (e.g., the average absolute correlation or the average
BASB) (McCaffrey, Ridgeway, and Morral 2004; Zhu, Coffman,
and Ghosh 2015). Noting that the optimal (δ, λ) aim at achieving
covariate balance on the entire matched dataset, the average
absolute correlation would be a suitable global measure in prac-
tice. We summarize our data-driven tuning procedure as follow:

1. Specify a candidate set of (δ, λ), where the candidates δ’s are
relatively small and a grid of λ’s ranges from 0 to 1 (fixing
λ = 1 when computational resources are restricted).

2. Construct the matched dataset by implementing the design
stage of Algorithm 1 with a pair of (δ, λ) from the pre-
specified candidate set.

3. Calculate the average absolute correlation (or other pre-
specified measures for covariate balance) on this matched
dataset.

4. Repeat steps 2–3 using grid search on the pre-specified can-
didate set of (δ, λ).

5. Find the (δ, λ) which minimizes the average absolute correla-
tion (or optimizing other pre-specified measures for covari-
ate balance), leading to the best covariate balance.

The tuning procedure is conducted in the design stage with-
out access to outcome information, thus, this procedure neither
biases analyses of outcomes nor requires corrections for multi-

ple comparisons (Zhu, Coffman, and Ghosh 2015; Rosenbaum
2020).

4. Asymptotic Properties

We present the asymptotic properties for the proposed matching
estimators for the population average causal ERF μ(w), where
we match either (a) on a scalar covariate, (b) on the true GPS,
(c) on the GPS consistently estimated by a parametric model,
given the fixed scale parameter λ = 1 with the fixed caliper
size δ = o(N−1/3) and Nδ → ∞. We focus on the point-
wise asymptotic properties with respect to each exposure level
w, given data are independent and identically distributed (iid).
The summary conclusions are that the proposed matching esti-
mator is asymptotically unbiased, consistent, and asymptotically
normal with a nonparametric rate (Nδ)−1/2 when matching on a
scalar covariate (e.g., GPS), yet the properties are not necessarily
held if matching on multidimensional covariates, which justifies
the GPS matching. Finally, we propose to smooth the estimator
by using a kernel smoother with a proper bandwidth parameter
h. Assuming h � δ = o(N−1/3), the asymptotic normality hold
for a smoothed matching estimator with a rate (Nh)−1/2.

We begin by defining the conditional means and variances of
potential outcomes given pre-exposure covariates and given the
GPS as follows:

μC(w, c) = E{Yj(w)|Wj = w, Cj = c};
μgps(w, e) = E{Yj(w)|Wj = w, e(Wj, Cj) = e};

σ 2
C(w, c) = var{Yj(w)|Wj = w, Cj = c};

σ 2
gps(w, e) = var{Yj(w)|Wj = w, e(Wj, Cj) = e}.

To simplify the algebraic expression, we only consider one-to-
one nearest neighbor matching on a set of continuous covariates
Cj. The matching estimator for μ(w) can be defined as

μ̂(w) = 1
N

N∑
j=1

K(j)YjIj(w, δ),

where K(j) indicates the number of replacements in which
observed unit j is used as a match, and Ij(w, δ) = I(Wj ∈
[w − δ, w + δ]). The difference between the matching estimator
μ̂(w), and the true population average causal ERF μ(w), can be
decomposed as,

μ̂(w) − μ(w) = {μ̄(w) − μ(w)} + Bμ(w) + Eμ(w), (1)
where, μ̄(w) is the average of conditional means of potential out-
comes given pre-exposure covariates, Bμ(w) is the conditional
bias of the matching estimator related to μ̄(w), and Eμ(w) is
the average of conditional residuals of the matching estimator.
Specifically, let j(j′) indicate the nearest neighbor match for
the template unit (w, Cj′). Note the nearest neighbor match for
(w, Cj′) depends on w. Since we focus on each w point-wise, we
omit w in the definition of j(j′) for conciseness. We have

μ̄(w) = 1
N

N∑
j′=1

μC(w, Cj′); Bμ(w) = 1
N

N∑
j′=1

Bμ,j′ = 1
N

N∑
j′=1

{μC(Wj(j′), Cj(j′)) − μC(w, Cj′)};
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Eμ(w) = 1
N

N∑
j=1

K(j)Eμ,jIj(w, δ)

= 1
N

N∑
j=1

K(j){Yj − μC(Wj, Cj)}Ij(w, δ).

Theorem 1 (The Order of Bias). Assume Assumptions 1–
4 and the uniform boundedness assumption (S.1 in the
supplementary materials) hold, if Cj is scalar, the order of
the bias of the proposed matching estimator, that is Bμ(w), is
Op(max{(Nδ)−1, δ}).

Theorem 1 provides the stochastic order of bias terms in
Equation (1). Under the given conditions of δ, the bias term
will be asymptotically negligible. The rate is faster than (Nδ)−1/2

given δ = o(N−1/3), which guarantees the bias does not domi-
nate the asymptotic behaviors of μ̂(w).

Theorem 2 (Variance). Assume Assumptions 1–4 and S.1 in the
supplementary materials hold. If Cj is scalar, (Nδ)var{μ̂(w)} =
E
[
σ 2

C(w, Cj){ 3fW (w)

2e(w,Cj)
}] + op(1).

Theorem 2 shows the asymptotic variance for μ̂(w) is finite
and provides an expression for it.

Theorem 3 (Consistency). Assume Assumptions 1–4 and S.1
in the supplementary materials hold. If Cj is scalar, μ̂(w) −
μ(w)

p→ 0.

Theorem 3 shows the proposed matching estimator is point-
wise consistent.

Theorem 4 (Asymptotic Normality). Assume Assumptions 1–4
and S.1 in the supplementary materials hold. If Cj is scalar,

�
−1/2
C (Nδ)1/2{μ̂(w) − μ(w)} d→ N {0, 1},

�C = 1
N

N∑
j=1

[
δK(j)2σ 2

C(Wj, Cj)Ij(w, δ)
]
.

Theorem 4 shows that when the set of matching covariates
contains only one continuously distributed variable, the
matching estimator is (Nδ)1/2-consistent and asymptotically
normal. Note �C depends on w. Relative to matching directly on
the covariates, propensity score matching has the advantage of
reducing the dimensionality of matching to a single dimension
(Abadie and Imbens 2016). Therefore, for GPS matching, we
have the following corollary.

Corollary 1 (Asymptotic Normality with GPS). Assume Assump-
tions 1–4 and the uniform boundedness assumption (S.2 in the
supplementary materials) hold.

�
−1/2
gps (Nδ)1/2{μ̂gps(w) − μ(w)} d→ N {0, 1},

�gps = 1
N

N∑
j=1

[
δK(j)2σ 2

gps{Wj, e(Wj, Cj)}Ij(w, δ)
]
.

In observational studies, we may never know the underlying
assignment mechanism of exposures, and thus the true GPS val-
ues are unknown. Consequently, the GPS has to be estimated by
statistical models prior to matching. Abadie and Imbens (2016)
derived and proved large sample properties of propensity score
matching estimators that correct for the first step estimation of
the propensity score. Following Abadie and Imbens (2016), we
consider a parametric specification for the GPS model e(w, c) =
g(w, c; θ), where g is a known link function and θ is a finite-
dimensional set of parameters. We estimate θ̂ by maximum like-
lihood estimation (MLE) (see Section S.2 of the supplementary
materials for additional details).

To simplify the notations, we define e(w, c; θ) the GPS with
parameter vector θ . Therefore, e(w, c; θ̂) denotes the estimated
GPS. We further define μ̂gps(w; θ) the matching estimator using
the GPS with parameter vector θ . Therefore, μ̂gps(w; θ̂) denotes
the matching estimator using the estimated GPS. We define
σ 2

gps(w, e; θ) analogously.

Theorem 5 (Asymptotic Normality with estimated GPS). Assume
Assumptions 1–4, the uniform boundedness and the conver-
gence in probability assumption (S.2′–3 in the supplementary
materials) hold. The GPS model has a parametric specifica-
tion with parameter vector θ and the estimated parameter θ̂

is estimated by MLE. Then, the matching estimator μ̂gps(w; θ̂)

satisfies
�

−1/2
ĝps (Nδ)1/2{μ̂gps(w; θ̂) − μ(w)} d→ N {0, 1},

�ĝps = 1
N

N∑
j=1

[
δK(j)2σ 2

gps{Wj, e(Wj, Cj; θ̂); θ̂}Ij(w, δ)
]
.

Theorem 5 states that no matter whether we match on the true
GPS or the GPS consistently estimated by a parametric model,
the asymptotic properties are unchanged. Importantly, the form
of the asymptotic variance remains the same if the GPS model
has a parametric specification and thus the estimated parameter
obtained by MLE in the GPS model has a convergence rate of
N−1/2.

To reduce the jaggedness and improve the finite sample
performance of the matching estimator proposed in Theorem 5,
we propose to smooth the estimator by using a kernel smoother
with a proper bandwidth parameter h (Wand and Jones 1994;
Heller 2007).

Proposition 1 (Asymptotic Normality of Smoothed ERF). We
denote the smoothed matching estimator as μ̂

(2)
gps(w; θ̂) =

1
N

∑N
j=1 K(j)Yj�(

Wj−w
h ), where w is an interior point of the

support of Wj, �(·) is a kernel, a unimodal symmetric proba-
bility density function with maximum at 0 and support [−1, 1],
and h ≥ 0 is the bandwidth. Assume Assumptions 1–4, S.2′-3
in the supplementary materials hold, and h � δ = o(N−1/3).
The GPS model has a parametric specification with parameter
vector θ and the estimated parameter θ̂ is estimated by MLE.
Then, the smoothed matching estimator μ̂

(2)
gps(w; θ̂) satisfies

[ δ
h
�

−1/2
ĝps ](Nh)1/2{μ̂(2)

gps(w; θ̂) − μ(w)}
d→ N {0,

1
2

∫
�2(u)du},
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where �ĝps is the same variance function as defined in
Theorem 5.

Proofs of Theorems 1–5 and Proposition 1 are provided in
the supplementary materials.

5. Simulations

We conduct simulation studies to evaluate the performance of
the newly proposed GPS matching approach compared to the
other five state-of-art alternatives: (a) GPS adjustment estima-
tor (Hirano and Imbens 2004); (b) IPTW estimator (Robins,
Hernan, and Brumback 2000); (c) nonparametric DR estimator
(Kennedy et al. 2017); (d) double machine learning (DML)
estimator (Colangelo and Lee 2020); and (e) covariate balancing
propensity score (CBPS) weighting estimator (Fong, Hazlett,
and Imai 2018). We also compare the performance of each
estimator (except for DML and CBPS weighting) when esti-
mating the GPS using (a) a parametric linear regression model
assuming normal residuals (Hirano and Imbens 2004) and (b) a
cross-validation-based Super Learner algorithm (Van der Laan,
Polley, and Hubbard 2007; Kennedy et al. 2017). For DML,
we estimate the GPS using a lasso regression recommended by
Colangelo and Lee (2020), and we choose 2-fold sample splits in
cross-fitting. In the supplementary materials, we vary the model
specifications and sample splits. For CBPS, we calculate the
GPS by directly optimizing the covariate balancing condition,
that is, minimizing the weighted correlation between exposures
and pre-exposure covariates. For the IPTW and DR estimators,
we follow the common practice of stabilizing the weights, and
consider both the untrimmed and trimmed weights.

5.1. Simulation Settings

We generate six pre-exposure covariates (C1, C2, . . . , C6), which
include a combination of continuous and categorical variables,
C1, . . . , C4 ∼ N (0, I4), C5 ∼ V{−2, 2}, C6 ∼ U(−3, 3), where
N (0, I4) denotes multivariate normal distributions, V{−2, 2}
denotes a discrete uniform distribution, and U(−3, 3) denotes a
continuous uniform distribution. We generate W using seven
different specifications of the GPS model all relying on the
cardinal function γ (C) = −0.8 + (0.1, 0.1, −0.1, 0.2, 0.1, 0.1)C.
We describe the details and rationale behind the choice of
these data generating mechanisms in Section S.3.1 of the sup-
plementary materials. We generate Y from an outcome model
which is assumed to be a cubic function of W with additive
terms for the confounders and interactions between W and the
confounders, Y|W, C ∼ N{μ(W, C), 102}, where μ(W, C) =
−1 − (2, 2, 3, −1, 2, 2)C − W(0.1 − 0.1C1 + 0.1C4 + 0.1C5 +
0.1C2

3) + 0.132W3. For each of the seven GPS model specifica-
tions (scenarios), we vary the sample size N(= 200, 1000, 5000).
For each combination of model specification and sample size, we
generate S = 500 simulated datasets.

After generating the data we estimate the ERF for each simu-
lation scenario using six different approaches, including the GPS
matching approach and five state-of-art alternatives. For IPTW
and DR estimators, we report results based on untrimmed and
trimmed weights, respectively (see Section S.3.2 of the sup-

plementary materials for the implementation details). For all
scenarios, we present two sets of simulation studies, one based
on the GPS estimated by a parametric linear regression model
assuming normal residuals (i.e., parametric MLE), and one
based on the GPS estimated by the cross-validation-based Super
Learner algorithm, that is, an ensemble learning method with
four learners, including extreme gradient boosting machines
(GBM), multivariate adaptive regression splines, generalized
additive models, and random forest (implemented by the Super-
Learner R package with four algorithms: SL.xgboost, SL.earth,
SL.gam, SL.ranger).

To assess the performance of the different estimators, we cal-
culate the absolute bias and root mean squared error (RMSE) of
the estimated ERF. These two quantities were estimated empir-
ically at each point within the range W∗, and integrated across
the range W∗. They are defined as follows: ̂Absolute Bias =∫
W∗ | 1

S
∑S

s=1 μ̂s(w) − μ(w)|fW(w)dw, R̂MSE = ∫
W∗ [ 1

S
∑S

s=1
{μ̂s(w) − μ(w)}2]1/2fW(w)dw, where S denotes the number
of replicates, and W∗ denotes a trimmed version of the
support W, excluding 10% of mass at the boundaries to
avoid boundary instability (Kennedy et al. 2017). We also
evaluate the coverage rates of the m-out-of-n bootstrap
point-wise Wald 100(1 − α)% confidence intervals (setting
α = 0.05). The (average) coverage rate is defined as follows:

̂Coverage Rate = ∫
W∗

[
1
S
∑S

s=1 I
(
μ(w) ∈ {μ̂s(w) ± z1−α/2 ×√

v̂arboots,s[μ̂s(w)]})]fW(w)dw.

5.2. Covariate Balance Assessment

We can compare the values of covariates balance measures,
for example, the absolute correlation or the BASB, described
in Section 3.2 between the matched dataset and unadjusted
dataset. If the average absolute correlation and the average BASB
for the observed covariates in the matched dataset are smaller
than those in unadjusted dataset, we conclude our approach
improves covariate balance. We choose a L1 distance metric and
use the data-driven approach proposed in Section 3.3 to select
the hyper-parameters (δ, λ). The implementation details and
selected hyperparameters (δ, λ) for each simulation scenario are
described in Section S.3.5 of the supplementary materials.

For two of the approaches; (a) the proposed GPS matching,
and (b) CBPS weighting approaches, we assess covariate balance
using the absolute correlation measure. We calculate the abso-
lute correlations for each of six covariates in the matched dataset
constructed by GPS matching, and compare with the weighted
absolute correlations obtained by CBPS and the absolute corre-
lations in the unadjusted dataset. We use the average absolute
correlation < 0.1 as the threshold indicating good covariate
balance. We fail to achieve this pre-specified threshold under
scenario 7 with the minimal average absolute correlation =
0.15 among all simulated datasets. Scenario 7 suggests that our
proposed method is unable to achieve covariate balance when
the exposure assignment is highly imbalanced in the covariates.
We recommend that researchers proceed to the analysis stage
only if covariate balance has been achieved in the design stage.
In Figure 1, we show absolute correlation results of GPS match-
ing from the remaining six simulation settings (scenarios 1–6)
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Figure 1. Absolute correlations. Each panel represents the absolute correlations for each covariate in the matched dataset (GPS estimated by a Super Learner algorithm;
solid blue line); matched dataset (GPS estimated by a parametric linear regression model; solid red line); CBPS weighted dataset (solid green line) and original unadjusted
dataset (dashed line) under six simulation settings under sample size N = 5000. The dotted line represents the threshold for covariate balance suggested by Zhu, Coffman,
and Ghosh (2015). The GPS in CBPS was calculated by directly optimizing the covariate balancing condition. Both GPS matching and CBPS weighting improve covariate
balance for all six covariates in all settings.

under two different approaches to estimate the GPS (i.e., Super
Learner and linear regression) with sample size N = 5000, and
compare them to results of CBPS weighting using the same sim-
ulated dataset. We see that covariate balance improves substan-
tially for both GPS matching and CBPS across all six covariates
for all simulation settings. Under five out of six settings (scenario
1, 3–6), absolute correlations for the GPS matched dataset for
all confounders are < 0.10, which indicates excellent covariate
balance. For matching, the absolute correlations are, in general,

slightly smaller when using a Super Learner algorithm to esti-
mate the GPS, compared to using a parametric linear regression
model. Compared to CBPS, we found the performance in terms
of covariate balance is, in general, comparable between GPS
matching and CBPS weighting (shown in Figure 1). As expected,
the GPS matching approach is advantageous under settings of
extreme values for the GPS (scenario 2). We also calculate the
BASB in the matched dataset constructed by GPS matching
where we categorize the exposure range by quintile (K = 5)
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Table 1. Absolute bias and root mean squared error (RMSE).

GPS generation N Matching Adjustment IPTW DR IPTW (trim) DR (trim) DML CBPS

1. N(0, 5)-distributed residuals 200 1.02(3.87) 1.19(3.50) 2.17(4.08) 1.08(3.71) 2.17(4.08) 1.22(3.29) * (*) 1.70(3.78)

1000 0.54(1.90) 1.31(2.49) 1.97(3.59) 0.90(2.31) 1.98(3.56) 0.61(1.47) 0.09(2.68) 1.49(3.33)

5000 0.21(1.29) 1.01(1.90) 1.42(3.23) 0.60(1.45) 1.44(3.16) 0.49(0.87) 0.10(1.34) 1.66(3.76)

2. t(2)-distributed residuals 200 3.16(6.98) 3.45(42.78) * (*) * (*) 5.69(22.27) 14.61(108.74) * (*) 2.11(6.43)

1000 2.20(4.17) * (*) 85.08(∗) * (*) 7.53(21.46) 48.29(704.54) 11.44(210.38) 4.75(14.15)

5000 1.44(2.91) * (*) * (*) * (*) * (*) 114.06(700.18) 6.43(71.69) 5.09(17.69)

3. Second-order term 200 1.41(4.28) 1.81(4.25) 2.58(4.80) 2.18(4.85) 2.59(4.73) 1.60(3.52) * (*) 1.67(4.44)

1000 0.86(2.07) 1.50(2.71) 2.00(4.10) 2.35(4.73) 2.07(3.94) 0.85(1.70) 0.24(2.83) 1.77(3.75)

5000 0.55(1.42) 1.16(2.07) 1.51(4.01) 2.68(13.77) 1.55(3.44) 0.83(1.33) 0.27(1.40) 1.87(4.17)

4. logistic link 200 1.35(4.27) 1.61(4.13) 2.46(4.58) 1.29(3.59) 2.47(4.57) 1.29(3.39) 48.6(∗) 1.62(4.04)

1000 0.62(2.03) 1.71(2.90) 1.98(3.89) 0.89(2.56) 2.01(3.83) 0.63(1.49) 0.09(2.84) 1.49(3.60)

5000 0.34(1.36) 1.19(2.11) 1.44(3.56) 0.63(1.49) 1.46(3.46) 0.56(1.01) 0.14(1.35) 1.65(4.21)

5. 1-logistic link 200 0.60(3.81) 1.14(3.09) 1.30(3.19) 0.92(3.55) 1.31(3.17) 0.53(2.71) * (*) 1.51(3.51)

1000 0.43(1.84) 1.48(2.32) 1.51(2.77) 0.83(2.20) 1.50(2.72) 0.35(1.32) 0.32(2.69) 1.61(2.76)

5000 0.19(1.24) 1.00(1.63) 1.05(2.47) 0.54(1.26) 1.04(2.37) 0.22(0.75) 0.44(1.46) 1.43(2.84)

6. log link 200 1.26(4.17) 3.30(9.87) 2.68(5.39) 2.62(45.00) 2.74(5.26) 0.99(4.18) * (*) 2.91(5.50)

1000 0.97(2.17) 2.46(4.18) 2.51(4.09) 3.57(97.76) 2.53(4.07) 0.44(1.80) 0.48(3.96) 2.54(4.04)

5000 0.62(1.48) 2.55(3.59) 4.06(47.33) 10.51(146.82) 1.97(4.96) 0.91(1.42) 0.54(1.49) 2.60(4.25)

NOTE: We estimate the GPS using parametric linear regression models (except for CBPS, where the GPS was calculated by optimizing the covariate balancing condition;
and for DML, where the GPS was estimated by using regularized linear regression (lasso)). All results are based on S = 500 replicates. Matching = the proposed GPS
matching; Adjustment = includes GPS as covariates in an outcome model proposed in Hirano and Imbens (2004); IPTW = inverse probability of treatment weighting; DR
= doubly robust proposed in Kennedy et al. (2017); DML = double machine learning proposed in Colangelo and Lee (2020); CBPS = covariate balancing propensity score
proposed in Fong, Hazlett, and Imai (2018); trim = trim the stabilized weight that is larger than 10. * represented values larger than 1000 or more than 50% of simulations
fail to converge.

in all six simulation scenarios. We use the average BASB < 0.2
as the threshold indicating good covariate balance. In Figures
S.2–S3 of the supplementary materials, we present the BASB
under six simulation scenarios. The results show that our GPS
matching approach also improves covariate balance in terms of
BASB for all six covariates. The results based on the absolute
correlation and the BASB measures are consistent.

5.3. Simulation Results

Table 1 shows the simulation results where we estimate the
GPS model using parametric linear regression models assuming
normal residuals, while Table S.4 of the supplementary materials
shows results for the settings where we estimate the GPS model
using Super Learner algorithms. For CBPS, the GPS was calcu-
lated by optimizing a covariate balance condition.

Under scenario 1, when the GPS model is correctly specified
as a linear regression model assuming normal residuals and thus
does not contain many extreme GPS values, all approaches per-
form reasonably well (see Table 1). The GPS matching, trimmed
nonparametric DR and DML approaches, in general, outper-
form the GPS adjustment, IPTW, CBPS, and untrimmed non-
parametric DR approaches, in terms of both absolute bias and
RMSE. The GPS matching estimator provides smaller absolute
bias, yet the trimmed nonparametric DR estimator provides
smaller RMSE. The DML estimator performs poorly when the
sample size is small (N = 200), yet performs well when the
sample size is relatively large (N = 1000, 5000), though the
RMSE is still larger compared to the GPS matching estimator.

Under scenario 2, when the GPS model is still linear yet
includes extreme GPS values (misspecified in the residual dis-
tribution), the GPS adjustment, IPTW, CBPS, DR, and DML
estimators all produce very large RMSE, and are not able to
reduce confounding bias even as the sample sizes increase.
There is plenty of literature suggesting stabilizing weights and
trimming extreme weights under binary/categorical exposure

settings (Crump et al. 2009; Harder, Stuart, and Anthony 2010;
Yang et al. 2016), yet the guidelines on handling extreme weights
under continuous exposure regimes are sparse. In these sim-
ulation studies, we see that the common practical guidelines
for trimming (capping the stabilized weights at 10 (Harder,
Stuart, and Anthony 2010)) do not provide sufficient remedy.
In contrast, we found our matching estimator has better finite
sample performance in scenarios where there are extreme values
of the estimated GPS, creating a much more stable estimation
than any of the other alternatives evaluated. Importantly, the
absolute bias and RMSE of the proposed matching estimator
decreases as the sample size increases. This may be because the
performance of the GPS matching estimator is not driven by one
or few units with extreme GPS values.

In scenarios 3–6, when the function forms of the GPS model
are misspecified in various ways, the GPS matching approach
consistently provides smaller bias and smaller RMSE compared
to most of the alternatives. The performance of the GPS match-
ing and DML estimators is comparable when the sample size is
relatively large (N = 1000, 5000). These results show that when
the GPS is modeled by a misspecified parametric linear regres-
sion model (which can happen in practice), matching provided
notable improved performances compared to other approaches
(see Table 1). This finding is aligned with results from Waern-
baum (2012) under binary exposure settings, showing that when
matching on a parametric model (e.g., a propensity score), the
matching estimator is robust to model misspecifications.

In terms of the performance of the m-out-of-n bootstrap
procedure, we found that the coverage rates are close to the
nominal level under scenario 1, although slightly below the
nominal level with sample size N = 5000. As expected, the
coverage becomes worse in other scenarios with misspecified
GPS models, especially, when the GPS model includes extreme
GPS values (misspecified in the residual distribution; scenario 2)
(see Section S.3.3 and Table S.2–S3 of the supplementary mate-
rials). When the GPS is estimated by a Super Learner algorithm,
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the performance of other approaches improves for almost all
scenarios (see Table S.4 of the supplementary materials), likely
because the flexible nonparametric modeling techniques have a
greater potential to effectively recover the correct form of the
GPS. Still, matching outperforms the GPS adjustment, IPTW,
and CBPS approaches both in terms of absolute bias and RMSE,
though it is slightly less efficient than the DR estimator. We show
that the use of an ensemble machine learning model for the
GPS estimation has the potential to improve the robustness to
GPS model misspecification in finite sample studies, given that
flexible nonparametric models themselves are often less prone
to model misspecifications compared to parametric models.
The use of cross-fitting leads to small improvements in the
performance of the DML estimator (G = 2 vs. G = 1) when the
sample size is relatively large (N = 1000, 5000), but decreases
the performance significantly when the sample size is small
(N = 200) (see Table S.5 of the supplementary materials).

We conduct additional simulation studies to assess the sen-
sitivity of the GPS matching approach to different values of
the hyperparameters (δ, λ) and differing distance metrics in
the matching function (see Section S.3.6 and Table S.6 of the
supplementary materials). We found the matching estimator is
relatively insensitive to the choice of distance metrics (L1 vs. L2
distance). We also compared our data-driven tuning procedure
(optimized for covariate balance), which was used in the main
simulations, that is, Tables 1 and S.7, to pre-specified hyperpa-
rameters (δ, λ). We found that for some settings the matching
estimator is sensitive to the choice of hyperparameters, and
matching estimators based on our data-driven approach achieve
small absolute bias and RMSE.

6. Data Application

The key scientific question in air pollution epidemiology studies
is to assess whether and in what magnitude exposure to air pol-
lution is causally linked to adverse health outcomes. We apply
the GPS matching approach to a cohort of Medicare enrollees
to estimate the causal ERF of long-term PM2.5 exposure on
all-cause mortality. Medicare claims data, obtained from the
Centers for Medicare and Medicaid Services (CMS), provide a
rich data platform to conduct air pollution studies on a national
scale (Di et al. 2017). To this end, we use the largest-to-date
Medicare enrollee cohort across the contiguous US from 2000
to 2016. This study population includes a total of 68.5 million
individuals, who reside in 31,414 zip codes across 17 years. Our
unit of analysis is zip code by year. That is, for each year, we
count the number of deaths among Medicare enrollees for each
zip code, resulting in a total of 0.5-million units. Daily PM2.5
exposures were estimated at a 1km × 1km grid cell resolution
using a spatio-temporal prediction model with excellent predic-
tive accuracy (cross-validated R2 = 0.86) (Di et al. 2019). To
obtain the annual average PM2.5 at each zip code, we average
the gridded concentrations within the boundary of each zip
code and then average the daily zip code level concentrations
within each year. We assign the annual average PM2.5 to the
corresponding zip code for each year. The range of annual
average PM2.5 from 2000 to 2016 was 0.01 – 30.92 μg/m3 with
1% and 99% quantiles equal to (2.76, 17.16).

Figure 2. Absolute correlations. The figure represents the absolute correlations for
each covariate in the matched dataset (solid line) and original unadjusted dataset
(dashed line). The dotted line represents the cutoff of covariate balance suggested
by Zhu, Coffman, and Ghosh (2015). The average absolute correlation is 0.19 before
matching, and the average absolute correlation is minimized as 0.04 after matching,
when we use caliper δ = 0.16 (i.e., L = 100 exposure levels) and scale parameter
λ = 1. Importantly, time trend (year) is strongly imbalanced before matching, yet
is balanced after matching.

Design Stage. We estimate the GPS by using an extreme GBM
(Zhu, Coffman, and Ghosh 2015; Chen and Guestrin 2016), with
annual zip code level PM2.5 exposure as the dependent variable
and 19 zip code level potential confounders as independent vari-
ables, including population demographic information, Medi-
caid eligibility information (as a surrogate for socioeconomic
status), meteorological information, time trend (year), and spa-
tial trend (census region) (see Figure 2). We use an extreme
GBM (i.e., a single learner in the Super Learner algorithm) to
estimate the GPS model because (a) it was more flexible and
achieved better covariate balance compared to a linear regres-
sion model on this complex data; (b) it was computationally fea-
sible on this large dataset. After obtaining the estimated GPS, we
implement our GPS matching procedure. Specifically, we choose
a pre-specified two-dimensional L1 distance metric and follow
the data-driven tuning procedure described in Section 3.3 to
select (δ, λ). The selected optimal caliper is δ = 0.16 (i.e.,
corresponding to L = 100 exposure levels), and optimal scale
parameter is λ = 1. We construct the matched dataset by
collecting all imputed observations. Additional details on the
grid search of hyperparameters (δ, λ) and the GPS model speci-
fication can be found in Section S.4.1–4.2 of the supplementary
materials.

We assess covariate balance by calculating the absolute corre-
lation for each potential confounder as discussed in Section 3.2.
We specify the average absolute correlation being less than
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0.1 as the threshold for covariate balance. The GPS matching
implementation largely improves covariate balance for 16 out
of 19 potential confounders. The average absolute correlation is
0.19 before matching, whereas, the average absolute correlation
is 0.04 after matching (See Figure 2).

Analysis Stage. After obtaining the matched dataset, we fit a
kernel smoother with Gaussian kernels on the matched dataset
to estimate the causal ERF relating long-term PM2.5 levels to
all-cause mortality rate. We construct the point-wise Wald 95%
confidence band for the ERF using the m-out-of-n bootstrap
procedure. We implement a block bootstrap with zip codes
as the block units. Therefore, we account for the correlation
between observations across different years yet within the same
zip code by the “block” nature of the bootstrap procedure. We
recalculated the GPS and refit the outcome model in each boot-
strap replicate to ensure that the bootstrap procedure jointly
accounted for the variability associated both with the GPS and
outcome model estimations. After fitting the kernel smoother,
to avoid extrapolation at the support boundaries, we trim the
highest 1% and lowest 1% PM2.5 exposures of the ERF, consis-
tent with Liu et al. (2019) and Di et al. (2017).

Figure 3 shows the average causal ERF in mortality rate
(left panel) and its transformation in hazard ratio (right panel).
For the hazard ratio, we defined the baseline rate as the esti-
mated average mortality rate corresponding to an exposure level
equal to the 1% quantile of PM2.5 exposures (i.e., 2.76 μg/m3).
To our knowledge, this is the first exposure-response curve
assessing the effects of long-term PM2.5 on all-cause mortality
using a causal inference approach to account for measured
confounders, which provides strong evidence of the causal link.
We find a consistently harmful effect of long-term PM2.5 expo-
sure on mortality across the range of annual average PM2.5
(2.76–17.16 μg/m3) for the entire dataset including Medicare
enrollees from 2000 to 2016 across the continental US. Impor-
tantly, the curve is steeper at exposure levels lower than the
current national standards (annual average ≤ 12 μg/m3), indi-
cating aggravated harmful effects at exposure levels even below
the national standards.

We also implement the nonparametric DR approach pro-
posed by Kennedy et al. (2017) on the same observational
dataset. We find that both the GPS matching estimator and non-
parametric DR estimator provide an exposure-response curve
with similar shapes (see Section S.4.3 of the supplementary
materials). The data analysis took approximately 6 hr to com-
plete using two computer clusters of 64 CPU cores and 500 GB
memory. The computational effort is shown in Section S.6 of the
supplementary materials.

7. Discussion

We have developed a GPS matching approach for estimat-
ing causal ERF. Our proposed approach fills an important
gap in the literature as it provides a theoretically-justified
generalization for matching in the context of a continuous
exposure. We demonstrate that: (a) under the local weak
unconfoundedness and other identifiability assumptions; (b)
when the GPS is consistently estimated by a parametric model;
and (c) the caliper δ is well chosen, the GPS matching esti-

Figure 3. The causal ERF relating all-cause mortality to long-term PM2.5 exposure.
The left panel presents the smoothed causal ERF in mortality rate obtained by a
kernel smoother with optimal bandwidth (solid line) and its point-wise Wald 95%
confidence band calculated by m-out-of-n bootstrap (dashed line). The right panel
is the smoothed curve in hazard ratio with its point-wise Wald 95% confidence
band. The GPS was estimated by using an extreme GBM (Chen and Guestrin 2016).

mator attains point-wise (Nδ)1/2-consistency and asymptotic
normality.

When the GPS is estimated by nonparametric machine learn-
ing models, the asymptotic properties described in Section 4
are not guaranteed, since the asymptotic properties of most
machine learning algorithms are unknown. DML methods with
cross-fitting via sample splitting are becoming increasingly pop-
ular in causal inference (Chernozhukov et al. 2018), including
recent extensions to continuous exposure settings (Colangelo
and Lee 2020; Semenova and Chernozhukov 2021). DML meth-
ods construct pathwise differentiable functionals depending on
the GPS and outcome models (as nuisance parameters), and
rely on cross-fitting via sample splitting to allow nonparametric
machine learning models for the nuisance parameter estima-
tion. Yet those methods require the pathwise differentiability
of the target functional (i.e., it is possible to compute the func-
tional’s pathwise derivative) (Kennedy 2022), whereas the GPS
matching estimator is nonpathwise differentiable functional of
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the distribution of the GPS, which makes it difficult to establish
an asymptotic approximation to the distribution of matching
estimators with nonparametrically estimated GPS (Abadie and
Imbens 2016). We conjecture that if the nonparametric model
for the GPS estimation converges faster than the residuals of the
matching estimator (which converge at the rate of (Nδ)−1/2), the
estimation error of the GPS is negligible compared to the error
created by the matching residuals and thus would not impact
the asymptotic properties of the matching estimator. The formal
analysis of the asymptotic properties of the matching estimator
using the GPS estimated by nonparametric machine learning
models is an open field of research.

While the asymptotic properties of the GPS matching esti-
mator relies on a more stringent theoretical condition than the
DML estimator, the GPS matching methods have several advan-
tages which are outlined below. First, like many other matching
methods under binary exposure settings, the GPS matching
methods, in the context of a continuous exposure, also separate
the design stage and the analysis stage. The design stage does
not involve any outcome data information. A careful design can
improve the objectiveness of the outcome data analysis (Rubin
2008).

Second, the GPS matching methods proposed are robust to
both GPS and outcome model misspecifications, according to
empirical evidence based on the simulation results in Section 5.
In observational studies, neither the GPS model nor the out-
come model is known. Although DR and DML methods pro-
duce consistent estimation as long as either the GPS or outcome
model is consistently estimated, both the GPS and outcome
models might be misspecified in practice. When specifying
the propensity score model, Dehejia and Wahba (1999) and
Waernbaum (2012) point out that when a misspecified propen-
sity score model constitutes a balancing score (Rosenbaum and
Rubin 1983) or a larger class of covariate score (Waernbaum
2012), the matching estimator is still consistent. This property,
if it applies to the GPS model, shows that matching is robust to
the GPS model misspecification if the misspecified GPS model
belongs to a class of balancing or covariate scores. This implies
there are multiple possibilities for the matching estimator to
make a reliable inference, which highlights the robustness of the
matching method to GPS model misspecifications. Moreover,
the GPS model can be selected based on measures of covariate
balance in the design stage of the GPS matching approach. Such
practice provides a safeguard against GPS model misspecifi-
cations (Abadie and Imbens 2016). When specifying the out-
come model, matching provides a nonparametric preprocessing
to reduce outcome model dependence and aims to offer the
promise of causal inference with fewer assumptions (Ho et al.
2007). The matching step reduces the dependence between the
exposures and potential confounders, and therefore estimates of
causal effects are less dependent on outcome modeling choices.
When the data allow proper matches, causal estimations are
robust to different modeling assumptions for the outcome analy-
sis (Ho et al. 2007). Matching is also more robust to the presence
of extreme values of the estimated GPS compared to weighting.
For weighing approaches, if the GPS value for a unit is 0.001,
the unit will be assigned a weight equal to 1000. Such extreme
weights are likely to dramatically increase the variance of the
weighting estimator; little changes in the GPS estimates (e.g.,

from 0.001 to 0.0001) may produce huge changes in the causal
estimates. Although methods to stabilize and trim large weights
exist, we found the performances of trimmed/stabilized weight-
ing estimators are only moderately improved in simulations, and
do not perform as well as the proposed GPS matching estimator.
In contrast, for matching, if there is another unit j with similar
exposure to unit j′’s exposure that also has an estimated GPS
value close to j′’s GPS value of 0.001, we simply match unit j′ and
unit j. Ultimately, the performance of the matching estimator
is not driven by one or few units with very extreme weights.
Also, matching only depends on the relative distance between
unit j′ and unit j in terms of GPS values and exposure levels
(“nearest neighbor”), thus, small changes in the GPS estimates
are less likely to change the matches dramatically, and thus are
also less likely to affect the causal estimates. Via a comprehensive
set of simulation studies, we found that the GPS matching
approach consistently performs well in finite samples under
settings with extreme estimated GPS values or when the GPS
model is misspecified. Formal theoretical analyses establishing
the robustness of the proposed matching methods to GPS and
outcome model misspecifications is subject of future work.

Third, the GPS matching methods maintain the unit of anal-
ysis intact and create an actual matched set (often called a hot
deck imputation in literature). In contrast, with weighting, it can
be challenging to interpret what it means when, for example,
a subject receives a weight of 1.3 (Stuart and Ackerman 2020).
Also, matching methods share the same advantage as weighting
of allowing extensive diagnostics (e.g., covariate balance assess-
ments) without invalidating analyses of outcomes. In the GPS
matching approach, we proposed two assessments of covari-
ate balance (i.e., absolute correlations and BASB). Such easy-
to-implement assessments for covariate balance are often not
straightforward for other model-based GPS adjustment or DR
approaches (Greifer and Stuart 2021). Under matching, in addi-
tion to covariate balance assessments, researchers can conduct
additional diagnostics, including data visualization, to assess the
robustness of their results since an actual matched set is readily
available. Based on the actual matched set, other distributional
causal estimands, for example, quantile causal effects, besides
population average causal effects (see Section 18.1 of Imbens
and Rubin (2015)) can be estimated. Such extensions are often
not straightforward for the existing causal inference methods for
continuous exposures.

Still there are several areas of future development. The
GPS matching approach relies on four main assumptions: (a)
consistency, (b) overlap, (c) local weak unconfoundedness, and
(d) smoothness. The consistency assumption is a fundamental
assumption in the classical potential outcomes framework.
Recent literature (Tchetgen and VanderWeele 2012) starts to
relax it by allowing interference, yet future adaptations are
needed to extend these relaxations to (generalized) propensity
score-based analyses. The overlap assumption is another
fundamental assumption for the validity of most causal
inference methods. Under binary or categorical exposure
settings, investigators widely use diagnostic plots to check
overlap (Wu et al. 2019) and trimming to ensure overlap (Crump
et al. 2009; Harder, Stuart, and Anthony 2010; Yang et al. 2016).
However, under continuous exposure settings, since the overlap
is defined by a probability density function, it is conceptually
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hard to check it directly via finite samples. One potential way to
check overlap in this setting is to categorize the continuous
exposure and check/ensure overlap among categories using
standard approaches developed in categorical exposure settings
(Yang et al. 2016; Wu et al. 2019), yet no current approach is
able to directly verify the overlap on a continuous scale. Future
work is needed to develop rigorous approaches to check/ensure
overlap in continuous exposure settings.

We introduced the local weak unconfoundedness assump-
tion, which is less stringent than the common weak uncon-
foundedness assumption, though it is still unverifiable since
data are always uninformative about the distribution of the
counterfactual outcomes. In addition, as with other (general-
ized) propensity score-based approaches, this approach does
not resolve the potential bias due to unmeasured confounding,
in which case the unconfoundedness assumption is violated.
The caliper δ in the assumption has both important theoretical
and practical implications. By choosing a suitable caliper δ that
depends on the sample size, under the local weak unconfound-
edness assumption, we identify the theoretical point at which
the proposed matching estimator achieves desirable asymptotic
properties. The smoothness assumption is essentially the stan-
dard Lipschitz continuous condition imposed in nonparametric
regression problems and has been used in models with coun-
terfactual outcomes (Kim et al. 2018). Also, in the smoothed
matching estimator, we require the rate of smoothness, that is,
the bandwidth, to satisfy h � δ = o(N−1/3), to ensure the bias
from matching discrepancy is asymptotically negligible and also
the original and smoothed matching estimators maintain the
similar asymptotic normal distributions. In finite sample, both
caliper δ and bandwidth h are considered tuning parameters
and searched via data-driven approaches. The focus of this
article is not to find a nonparametric estimator with the sharpest
rate of convergence; thus, we obtain the asymptotically unbi-
ased matching estimator via under-smoothing (Wand and Jones
1994). A natural extension is to generalize the bias-corrected
matching estimator proposed in Abadie and Imbens (2011) into
our nonparametric settings, which has the potential to obtain
sharper results on the rate of convergence. We obtained the
theoretical results of the matching estimator relying on the true
GPS and the GPS estimated by a parametric model. In future
work, it is worthwhile to explore the asymptotic properties of
the matching estimator using a GPS model estimated non-
parametrically. Both the bootstrap procedure and the theoretical
results of this article are developed for a given exposure point-
wise. It would be helpful to develop inference procedures that
are able to quantify the uncertainty of the exposure-response
curve via simultaneous confidence bands and derive uniform
consistency and weak convergence of the matching estimator.

We applied the GPS matching approach to estimate the causal
relationship between long-term PM2.5 exposure and all-cause
mortality on a massive Medicare administrative data cohort.
We found strong evidence of a positive and near-linear causal
ERF between long-term PM2.5 exposure and all-cause mortality.
Some previous air pollution studies were conducted using
propensity score-based analyses, however, researchers often
dichotomize or categorize continuous exposures in order to use
propensity score methods (Wu et al. 2019). The GPS matching
approach introduced in this article is the first matching

approach that allows for the estimation of a causal ERF of a
continuous exposure and the assessment of covariate balance.
Computational feasibility is an important consideration. The
proposed matching with replacement procedure eases the
computational burden (Imbens and Rubin 2015) and has the
capability of using parallel computing to accelerate the matching
procedure.

Finally, the GPS matching approach can be used in any field
where interventions (named exposures/treatments in different
settings) are continuous. Environmental health research is one
application area where many exposures/treatments are natu-
rally continuous, for example, air pollution, temperature, and
ultraviolet radiation. We anticipate the simplicity and generality
of our matching framework will promote awareness of causal
inference in future science and policy-relevant research in many
application areas including social science, economics, and many
sub-fields of public health.

Supplementary Materials

The supplementary materials provide all technical proofs, additional details
of simulation and data application, and discussions on the computational
details and software package.
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