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SUMMARY

The methodological development of this article is motivated by the need to address the following
scientific question: does the issuance of heat alerts prevent adverse health effects? Our goal is to
address this question within a causal inference framework in the context of time series data. A key
challenge is that causal inference methods require the overlap assumption to hold: each unit (i.e.,
a day) must have a positive probability of receiving the treatment (i.e., issuing a heat alert on that
day). In our motivating example, the overlap assumption is often violated: the probability of issuing
a heat alert on a cooler day is near zero. To overcome this challenge, we propose a stochastic inter-
vention for time series data which is implemented via an incremental time-varying propensity score
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58 X. WU AND OTHERS

(ItvPS). The ItvPS intervention is executed by multiplying the probability of issuing a heat alert
on day t—conditional on past information up to day t—by an odds ratio δt. First, we introduce a
new class of causal estimands, which relies on the ItvPS intervention. We provide theoretical results
to show that these causal estimands can be identified and estimated under a weaker version of the
overlap assumption. Second, we propose nonparametric estimators based on the ItvPS and derive
an upper bound for the variances of these estimators. Third, we extend this framework to multisite
time series using a spatial meta-analysis approach. Fourth, we show that the proposed estimators
perform well in terms of bias and root mean squared error via simulations. Finally, we apply our
proposed approach to estimate the causal effects of increasing the probability of issuing heat alerts
on each warm-season day in reducing deaths and hospitalizations among Medicare enrollees in 2837
US counties.

Keywords: Incremental propensity score; Meta-analysis; Multisite time series; Time-varying confounding.

1. Introduction

Extreme heat events are a significant threat to public health (US Environmental Protection Agency,
2006). In the United States, heat waves have been associated with increased morbidity and mortality
(Bobb and others, 2014; Weinberger and others, 2020). To reduce heat-related adverse health out-
comes, the US National Weather Service (NWS) issues excessive heat warnings (to indicate more
severe heat events) and heat advisories (to indicate less severe heat events) in advance of fore-
casted heat events to communicate these risks to the public and local government officials (Hawkins
and others, 2017). However, how effective these excessive heat warnings and advisories (collectively,
“heat alerts”) are in reducing adverse health outcomes such as deaths and hospitalizations is largely
unknown (Weinberger and others, 2021). To fill these knowledge gaps, we acquired daily time series
data during the warm months (April–October) of 2006–2016 for N = 2837 US counties. For each
county, we obtained (i) daily maximum heat index (an index that combines air temperature and rel-
ative humidity to posit a human-perceived equivalent temperature); (ii) daily issuance of heat alerts
(binary); and (iii) daily number of deaths and hospitalizations among Medicare enrollees. We define
the unit of analysis as the day to align with the time series literature in environmental epidemiology
(Bell and others, 2004).

To analyze this data set within a causal inference framework, we need to overcome the follow-
ing methodological challenges. First, the overlap assumption (Rosenbaum and Rubin, 1983), i.e.,
any day must have a positive probability of being treated (e.g., receiving a heat alert) or untreated
(e.g., not receiving a heat alert), is often violated in time series data. This is because during the study
period heat alerts were only issued on 2.52% of the warm-season days across US counties. Moreover,
a heat alert is highly unlikely on a cool day, and more likely on a very hot day. Even if the overlap
assumption did hold, unrealistically large sample sizes would be needed to avoid point estimates
of the causal effects with very large estimated variances (Kang and Schafer, 2007). This is because
the limited overlap in the covariate distribution between treated and untreated units leads to the
existence of extreme propensity scores (close to 0 or 1), translating into large errors in the weights
by inverse propensity weighting (IPW) methods and very low effective sample sizes for the resulting
weighted populations. Second, time series observational studies are prone to time-varying confound-
ing (Robins, 1986). To adjust for confounding bias, we must control for time-varying covariates (e.g.,
daily maximum heat index) associated with both the treatment (e.g., daily issuance of heat alerts)
and outcomes of interest (e.g., daily deaths or hospitalizations). Third, we are dealing with multi-
site time series data where it is plausible that the true causal effects of interest (e.g., whether heat
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Stochastic intervention in time series 59

alerts prevent deaths and hospitalizations in a given county) might be highly heterogeneous across
counties.

Literature has focused on some aspects of the methodology gaps identified above. First, while
the causal inference literature on time series studies is sparse, there are a few exceptions (Bojinov
and Shephard, 2019; Sobel and Lindquist, 2014; Ning and others, 2019; Papadogeorgou and others,
2022; Shi and others, 2022). Bojinov and Shephard (2019) introduced an extended potential outcome
framework for randomized experiments on time series data assuming that the overlap assumption
always holds. They focused on the setting where the treatment at each time can be randomly assigned
based on positive probabilities. Shi and others (2022) extended this framework to online randomized
experiments with reinforcement learning (see Sutton and Barto (2018) for an overview). Sobel and
Lindquist (2014) and Ning and others (2019) proposed a relevant causal inference framework for
time series observational studies with the focus on modeling the correlation structures of multiple
time series, whereas both require the overlap assumption to be held in observational data. Therefore,
their methods do not directly apply to time series observational studies with overlap violations. Sec-
ond, stochastic interventions (e.g., increasing or decreasing the probability of issuing heat alerts on
each day), have been proposed to overcome violations of the overlap assumption in observational
studies (Stock, 1989; Robins and others, 2004; Muñoz and Van Der Laan, 2012; Haneuse and Rot-
nitzky, 2013; Kennedy, 2019; Imai and Jiang, 2019; Naimi and others, 2021). Most recently, Kennedy
(2019), Kim and others (2021), and Díaz and others (2021) proposed causal inference framework
for incremental propensity scores and modified treatment policies based on stochastic interven-
tions, accounting for time-varying confounding in longitudinal studies. However, there are important
distinctions between longitudinal studies and multisite time series studies. More specifically, in lon-
gitudinal studies, the number of study units, which are often defined by individual patients or sites
(N), is much larger than the number of repeated observations (T) for each study unit (T << N).
Whereas, in multisite time series studies, the number of study units, which are instead defined by
time points (e.g., days T), can be larger than the number of sites (e.g., counties N). Such distinc-
tions in data structure lead to different considerations in defining causal estimands and developing
statistical methods. Papadogeorgou and others (2022) are the first to bridge a stochastic interven-
tion with time series observational data, but they focused on treatments that can be modeled by
a spatio-temporal point process. In this context, they analyzed a single time series that contains
information on the geographic coordinates of treatments (e.g., airstrikes). In the presence of hetero-
geneity of the true causal effects across counties, as is the case in our motivating example, the causal
estimands defined on a homogeneous super-population—as is done in the context of longitudinal
studies or for a spatio-temporal point process—might not capture the heterogeneous nature of the
study population.

To the best of our knowledge, a causal inference approach in the context of a stochastic inter-
vention for multisite time series is lacking. Accordingly, in this article, we introduce a stochastic
intervention defined by the incremental time-varying propensity score (ItvPS) for time series data
(i.e., the ItvPS intervention). The ItvPS intervention is executed by multiplying the probability of
receiving the treatment at time t conditional on past information up to time t by an odds ratio δt

(e.g., increase the probability of issuing heat alerts on day t). This novel framework allows us to
define a broad class of stochastic causal estimands on time series data and ease the identification
and estimation due to the violation of the overlap assumption.

In Section 2, we set up the notations in the context of our motivating example about national
data on heat alerts. In Section 3, starting with a single time series, we define the stochastic causal
estimands based on ItvPS intervention and their corresponding assumptions of identifiability. Next,
in Section 4, we propose nonparametric estimators based on ItvPS, derive an upper bound for the
variances of these estimators, and construct the corresponding asymptotic confidence intervals (CIs)

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/article/25/1/57/7054586 by guest on 17 M

arch 2025
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and time-uniform confidence sequences (CSs). In Section 5, we extend our approach into the context
of multisite time series, introduce additional assumptions of identifiability for multisite time series,
and propose a random-effects meta-analysis to pool causal estimands across time series from mul-
tiple sites. In Section 6, we illustrate the finite-sample performance of the proposed estimators via
simulation studies. In Section 7, we apply our method to the national heat alert data set to estimate
the effectiveness of heat alerts in reducing morbidity and mortality among Medicare beneficiaries.
In Section 8, we conclude with a summary and discussion.

2. Set up

2.1. Mathematical notations

We introduce the following notation in the context of time series data. Let Yi,t, Wi,t, Ci,t be the out-
come, treatment and pretreatment covariates at time t, respectively, for t ∈ {1, 2, …, T} in site i, for
i ∈ {1, 2, …, N}. First, we introduce the causal estimands in the context of a single time series and
omit the index i for conciseness. Later, in Section 5, we reintroduce the index i to indicate multisite
time series.

For a single time series, each time t can be assigned to the treatment Wt = 1 or Wt = 0, and
then the outcome Yt is observed. We assume that Wt is binary; Yt and Ct can be binary, categorical,
or continuous. We define {C1:T = (C1, ..., CT), W1:T = (W1, ..., WT), and Y1:T = (Y1, ..., YT)}. We
denote by Ft the filtration which captures past information prior to the treatment assignment at time
t, that is, Ft = {C1:t, W1:(t−1), Y1:(t−1)} (note, Ct included in the filtration Ft because it precedes the
treatment that takes place at time t). Following the potential outcome framework for time series data
(Bojinov and Shephard, 2019), we denote Yt(w1:t) the potential outcome at time t that would have
been observed under the treatment path w1:t = (w1, ..., wt), and we introduce the potential outcome
path Y1:t(w1:t) = {Y1(w1:1), Y2(w1:2), ..., , Yt(w1:t)}.

We define the time-varying propensity score at time t as pt(wt,Ft) = Pr(Wt = wt|Ft), for wt =
{0, 1}. In our motivating example, the time-varying propensity score for treatment Wt = 1 denotes
the probability of issuing a heat alert on day t conditional on past information up to day t prior to the
heat alert issuance. We extend the incremental propensity score interventions proposed by Kennedy
(2019) to the time series studies. The incremental propensity score intervention is an intervention
that shifts the value of the propensity score. This is in contrast with the traditional deterministic
intervention, which instead is implemented by shifting the value of treatment (see Section 2.2 for an
example). First, we introduce the notation of the ItvPS as:

pItvPS
t (wt,Ft) := wtδtpt(1,Ft) + (1 − wt)pt(0,Ft)

δtpt(1,Ft) + pt(0,Ft)
, for wt = {0, 1}. (2.1)

Note that pItvPS
t (wt,Ft) is obtained by solving the following equation

δt = pItvPS
t (1,Ft)/pItvPS

t (0,Ft)

pt(1,Ft)/pt(0,Ft)
, (2.2)

where the odds ratio δt is set a priori by the analyst. Next, we define a stochastic intervention by
the notation of ItvPS, and call it an ItvPS intervention. By executing an ItvPS intervention, we
replace the probability of receiving the treatment pt(1,Ft) at time t by pItvPS

t (1,Ft). Such a stochastic
intervention reflects an odds ratio change of δt in the time-varying propensity scores. In the policy-
relevant question, this can be explained as multiplying the probability of receiving the treatment on
day t—conditional on past information up to day t, Ft—by an odds ratio δt (see 2.2).
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Stochastic intervention in time series 61

In the context of a time series with length T , we denote δ1:T = {δ1, δ2, ..., δT} as the whole
intervention path and wItvPS

1:T (δ1:T) as the postintervened treatment path under the intervention path
δ1:T .

2.2. Motivating example

To illustrate these mathematical notations in our motivating example, the binary treatment Wt indi-
cates the issuance of a heat alert on day t in a given county. The covariates Ct include (forecasted)
population-weighted daily maximum heat index that occurred just prior to treatment on day t, day
of the week, and federal holidays which may be related to both heat alert issuance and adverse
health outcomes (Weinberger and others, 2021). The outcome Yt denotes the daily number of all-
cause deaths or cause-specific hospitalizations for disease causes that were found to be associated
with extreme heat in the Medicare population (Bobb and others, 2014). Note, we do not have infor-
mation on cause-specific deaths, therefore we focus on all-cause deaths. The filtration Ft represents
the past information prior to the treatment assignment on day t. The inclusion of past treatments
W1:t−1 and/or outcomes Y1:t−1 is also allowed through the filtration, aligning with other literature
(Bojinov and Shephard, 2019; Kennedy, 2019).

While the exact criteria used to issue heat alerts varies across the jurisdictions of local NWS
offices, a key commonality across jurisdictions is that the issuance of heat alerts is based on forecasts
of future weather conditions based on past information. Therefore, the probability of issuing a heat
alert on day t, pt(wt,Ft) is modeled based on the past information Ft as discussed in the previous
paragraph.

We consider a hypothetical ItvPS intervention in Los Angeles, CA, where one could increase the
probability of issuing heat alerts by an odds ratio δt = 10 for every day t during the warm months
(April–October) of 2006–2016. Figure 1 illustrates the comparison between the heat alerts that were
issued, and the heat alerts that could have been issued under this ItvPS intervention. For example,
if the probability of issuing a heat alert on day t is 90%, under the incremental propensity score
intervention with an odds ratio δt = 10, the probability of issuing a heat alert would increase from
90% to 10×90%

10×90%+1−90% ≈ 98.9%. Note that increasing the probability of issuing a heat alert by an odds
ratio of 10 for each day is not equivalent to increasing the total number of heat alerts by 10 times.
We find that if we hypothetically increase the probability of issuing a heat alert by an odds ratio
of 10 on each warm-season days, the NWS office would have issued 128 heat alerts (an average of
approximately 12 alerts per year) in the warm months of 2006–2016, compared to the total of 56
heat alerts (an average of approximately 5 alerts per year) actually issued.

3. Causal estimand and identification

3.1. General estimand

We focus on the following scientific question “If we had changed the probability of issuing heat
alerts by some prespecified amount on each day in the study period, how many total deaths would
have been averted and how many cause-specific hospitalizations for heat-related diseases could have
been avoided?” This question can be answered by quantifying the causal effect of an ItvPS interven-
tion. We first define the general causal estimand of an ItvPS intervention in the context of time
series data. The parameter τt(δ1:t) := E[Yt{wItvPS

1:t (δ1:t)}] denotes the mean potential outcome at
time t with respect to the postintervened treatment path wItvPS

1:t (δ1:t). In econometrics, this parameter
belongs to the class of dynamic causal effects since the parameter changes over time (Rambachan
and Shephard, 2021). In our motivating example, this would be the counterfactual daily deaths or
hospitalizations on day t given the ItvPS intervention.
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62 X. WU AND OTHERS

Fig. 1. NWS-issued heat alerts for Los Angeles, CA, during the warm months (April–October) of 2006–2016.
The cross x’s represent the heat alerts that were issued factually, and the circles represent the anticipated heat
alerts under a counterfactual scenario where the probability of issuing heat alerts was increased for every warm-
season day by an odds ratio of 10. Therefore, we find under this counterfactual scenario, Los Angeles, CA,
would have issued 128 heat alerts from 2006 to 2016, compared to 56 heat alerts that were actually issued.

In cross-sectional or longitudinal studies, causal estimands are generally defined as the average
of potential outcomes across N patients or sites. In the context of a single time series, we define
the causal estimand as the temporal average of the potential outcomes up to time T . Under the
postintervened treatment path wItvPS

1:t (δ1:t), where the probability of receiving the treatment on day t
has been multiplied by an odds ratio δt for t = 1, …, T , we define following temporal-average causal
estimand τ̄ (δ1:t,T) = 1

T

∑T
t=1 τt(δ1:t). In our motivating example, for Los Angeles, CA (see Figure 1),

the parameter τ̄ (δ1:t,T) denotes the average number of deaths or cause-specific hospitalizations per
day under the hypothetical scenario where the probability of issuing a heat alert is multiplied by an
odds ratio δt = 10 for each day t = 1, …, T during the warm season.

3.2. Causal estimand on observed treatment path

Without further modeling assumptions, estimating the causal estimand τ̄ (δ1:t,T) defined in Section 3.1
might be challenging for large T because this parameter depends on a treatment path with length T .
Building upon Bojinov and Shephard (2019), we define a duration-t0 causal estimand conditional
on the observed treatment path wobs

1:(t−t0−1) denoted as τt(δ(t−t0):t) (i.e., the duration of interventions is
up to t0 days), and its temporal average τ̄ (δ(t−t0):t,T), as follows

τt(δ(t−t0):t) = E[Yt{wobs
1:(t−t0−1), wItvPS

(t−t0):t(δ(t−t0):t)}], t0 = 0, …, t − 1;

τ̄ (δ(t−t0):t,T) = 1
T − t0

T∑
t=t0+1

{τt(δ(t−t0):t)}.

Defining estimands dependent on prespecified fixed memory is common in time series model-
ing, e.g., in an autoregressive integrated moving average model, the fixed memory up to lagged t0
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data points was prespecified. They are also compatible with the causal inference literature since
they can be treated as conditional causal estimands conditioning on partial historical information
{W1:(t−t0−1) = wobs

1:(t−t0−1)} (Imbens and Rubin, 2015). Related theoretical developments were studied
by van der Laan and Malenica (2018), studying a class of conditional (or named “context-specific”)
causal parameters for a single time series, conditioning on a fixed dimensional summary measure
of the historical information. Furthermore, they established the statistical properties of their corre-
sponding estimators under a targeted maximum likelihood estimation framework. Along this line,
we define the causal estimands dependent on the observed treatment path wobs

1:(t−t0−1) as a class of
conditional causal estimands conditioning on historical information. We later show the estimands
can be estimated using a weighted estimation strategy (see Section 4).

3.3. Assumptions and identification

Following the potential outcomes framework for time series data (Bojinov and Shephard, 2019), we
introduce the following assumptions of identifiability:

ASSUMPTION 1 (SUTVA) The outcome path satisfies nonanticipating, consistency, and noninterfer-
ence assumptions, that is, Y obs

t = Yt(wobs
1:T) = Yt(wobs

1:t ) ∀ t = 1, ..., T .

We use the stable unit treatment value assumption (SUTVA) to articulate the three conditions that
are required for the potential outcomes framework for time series data (VanderWeele and Hernan,
2013; Bojinov and Shephard, 2019). (i) The potential outcomes at time t can depend on the treatment
path up to time t but are not allowed to depend on future treatments (nonanticipating). (ii) There
is only one version of the treatment for each time t, and each treatment path up to time t realizes a
unique observed outcome at time t (consistency). (iii) Since we only have one site, there is no spillover
effect from other sites (noninterference).

ASSUMPTION 2 (Unconfoundedness) The assignment mechanism is unconfounded if for all W1:T ∈
W = {0, 1}T , Wt ⊥ Ys(w1:s) | Ft ∀ t = 1, ..., T and t ≤ s ≤ T .

Assumption 2 aligns with the “sequential randomization” assumption introduced in longitudinal
studies by Robins and others (1994), which states that the treatment assignment only depends on
past information and thus is conditionally independent of future potential outcomes. This assump-
tion also excludes the possibility that future potential outcomes could impact the current treatment
assignment retrospectively (a phenomenon that has been discussed in Granger (1980)).

ASSUMPTION 3 (Weak overlap) The assignment mechanism weakly overlaps if, for all t ∈ {1, 2, ..., T},
there exists a constant γ > 0, such that pItvPS

t (wt,Ft) ≤ γ pt(wt,Ft), ∀wt ∈ {0, 1}.

The overlap assumption in traditional causal inference literature requires that each time t has a
positive probability of being treated or untreated. In contrast, a stochastic intervention framework
may avoid the overlap assumption by not intervening at time points with zero probability of being
either treated or untreated (Kennedy, 2019). Instead, the stochastic intervention framework only
requires a weak overlap assumption to hold (Papadogeorgou and others, 2022). Specifically, the weak
overlap assumption always holds under the proposed ItvPS intervention (a special type of stochastic
intervention), since, according to (2.1), pItvPS

t (wt,Ft) ≤ max{1, δt}pt(wt,Ft), and pItvPS
t (1,Ft) ≡ 0

when pt(1,Ft) = 0 and pItvPS
t (0,Ft) ≡ 0 when pt(0,Ft) = 0 regardless of the value of δt (Naimi and

others, 2021).
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Under the assumptions defined above, our proposed causal estimand is identified: at any time

point t, τt(δ1:t) =∑w1:t∈W1:t

∫
∂R1:t

μ(wt,Ft)×∏t
s=1

[wsδsps(1,Fs) + (1 − ws)ps(0,Fs)

δsps(1,Fs) + ps(0,Fs)

]
︸ ︷︷ ︸

:=pItvPS
s (ws,Fs)

×dPr(∂rs|Ws−1

= ws−1,Fs−1), where ∂R1:t = ∂R1 × ... × ∂Rt, ∂Rs = Fs/{Fs−1, Ws−1}, s = 1, ..., t, and μ(wt,Ft) =
E(Yt | Wt = wt,Ft), t = 1, ..., T . The proof is provided in Section S.1 of the supplementary material
available at Biostatistics online. However, although τt(δ1:t) is causally identifiable, the corresponding
quantity may not be stably estimated using a single time series. We instead focus on the temporal
average causal estimand τ̄ (δ1:t,T) = 1

T

∑T
t=1 τt(δ1:t), which can also be causally identified given τt(δ1:t)

is identifiable ∀t = 1, 2, ..., T . Likewise, the duration-t0 causal estimand τt(δ(t−t0):t) and its temporal
average τ̄ (δ(t−t0):t,T) can be identified under the same assumptions.

4. Estimation and inference

4.1. Weighted estimation

We focus on the estimation and inference of duration-t0 causal estimands τt(δ(t−t0):t) given the theo-
retical and practical conveniences discussed in Section 3.2. If the value of time-varying propensity
score ps(ws,Fs) is known, as in Section 6 of Kim and others (2021), the unbiased estimator of
τt(δ(t−t0):t) is defined as,

τ̂t(δ(t−t0):t) =
t∏

s=t−t0

⎡⎢⎢⎢⎢⎣ {Wsδs + (1 − Ws)}
δsps(1,Fs) + ps(0,Fs)︸ ︷︷ ︸

:=pItvPS
s (Ws,Fs)/ps(Ws,Fs)

⎤⎥⎥⎥⎥⎦Yt.

When the time-varying propensity score ps(ws,Fs) is unknown, the estimation strategy requires two
steps: (i) at each time s, we estimate the time-varying propensity score p̂s(ws,Fs); (ii) if the time-
varying propensity scores can be modeled using correctly specified parametric models, we construct
the following unbiased estimator for a duration-t0 estimand on the observed treatment path,

τ̂t(δ(t−t0):t) =
t∏

s=t−t0

⎡⎢⎢⎢⎢⎣ {Wsδs + (1 − Ws)}
δsp̂s(1,Fs) + p̂s(0,Fs)︸ ︷︷ ︸

:=̂pItvPS
s (ws,Fs)/̂ps(ws,Fs)

⎤⎥⎥⎥⎥⎦Yt,

ˆ̄τ(δ(t−t0):t,T) = 1
T − t0

T∑
t=t0+1

τ̂t(δ(t−t0):t) = 1
T − t0

T∑
t=t0+1

( t∏
s=t−t0

[ {Wsδs + (1 − Ws)}
δsp̂s(1,Fs) + p̂s(0,Fs)

]
Yt

)
.

The proposed estimator is defined as a weighted average of the observed outcomes Yt weighted
by time-varying weights, in which the weights correspond to the product of fractions where the
numerators are p̂ItvPS

s (ws,Fs) and denominators are p̂s(ws,Fs). All estimators described above are
generally referred to as IPW estimators, since they take estimates for the time-varying propensity
score p̂s(ws,Fs), and plug it into the denominator of the weights.
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4.2. Statistical inference

We investigate the variance of the proposed IPW estimators. For a fixed t, conditioning on Ft−t0 , the
variance of the estimator τ̂t(δ(t−t0):t) can be defined as

Var{τ̂t(δ(t−t0):t)|Ft−t0} = E
( t∏

s=t−t0

[ {Wsδs + (1 − Ws)}
δsp̂s(1,Fs) + p̂s(0,Fs)

]2

Y 2
t

∣∣∣Ft−t0

)
︸ ︷︷ ︸

Vt

−
{

E
( t∏

s=t−t0

[ {Wsδs + (1 − Ws)}
δsp̂s(1,Fs) + p̂s(0,Fs)

]
Yt

∣∣∣Ft−t0

)}2
,

where Vt is defined as

Vt =
∑

w(t−t0):t∈W(t−t0):t

∫
∂R(t−t0):t

E(Y 2
t | W(t−t0):t = w(t−t0):t,Ft)

×
t∏

s=t−t0

[ {wsδsps(1,Fs) + (1 − ws)ps(0,Fs)}
δsps(1,Fs) + ps(0,Fs)

]2

× dPr(∂rs|Ws−1 = ws−1,Fs−1).

The IPW estimator of Vt can be written as

V̂t =
t∏

s=t−t0

[ {Wsδ
2
s + (1 − Ws)}

[δsp̂s(1,Fs) + p̂s(0,Fs)]2

]
Y 2

t . (4.3)

A straightforward IPW estimator of Var{τ̂t(δ(t−t0):t)|Ft−t0} can be written as

V̂ar{τ̂t(δ(t−t0):t)|Ft−t0} =
t∏

s=t−t0

[ {Wsδ
2
s + (1 − Ws)}

[δsp̂s(1,Fs) + p̂s(0,Fs)]2

]
Y 2

t −
⎛⎝ t∏

s=t−t0

[ {Wsδs + (1 − Ws)}
δsp̂s(1,Fs) + p̂s(0,Fs)

]
Yt

⎞⎠2

.

Note, this variance estimator on a single time series is always equal to 0, i.e.,

t∏
s=t−t0

[ {Wsδ
2
s + (1 − Ws)}

[δsp̂s(1,Fs) + p̂s(0,Fs)]2

]
Y 2

t −
⎛⎝ t∏

s=t−t0

[ {Wsδs + (1 − Ws)}
δsp̂s(1,Fs) + p̂s(0,Fs)

]
Yt

⎞⎠2

=
[ ∏t

s=t−t0&Ws=1 δ2
s∏t

s=t−t0
{δsp̂s(1,Fs) + p̂s(0,Fs)}2

]
Y 2

t −
⎛⎝[ ∏t

s=t−t0&Ws=1 δs∏t
s=t−t0

{δsp̂s(1,Fs) + p̂s(0,Fs)}

]2

Y 2
t

⎞⎠ = 0.

Therefore, instead, following the time series literature (Bojinov and Shephard, 2019; Papadogeorgou
and others, 2022), we use Vt as an upper bound of the conditional variance of τ̂t(δ(t−t0):t) conditioning
on Ft−t0 . This is because we have

Var{τ̂t(δ(t−t0):t)|Ft−t0} = Vt −
{

E
( t∏

s=t−t0

[ {Wsδs + (1 − Ws)}
δsp̂s(1,Fs) + p̂s(0,Fs)

]
Yt

∣∣∣Ft−t0

)}2 ≤ Vt,
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and the IPW estimator V̂t can be directly calculated using observed data as shown in
Equation 4.3.

To calculate the variance of the temporal average estimator ˆ̄τ(δ(t−t0):t,T) = 1
T−t0

∑T
t=t0+1 τ̂t(δ(t−t0):t),

we firstly define a sequence for the estimation error ut,t0 ≡ τ̂t(δ(t−t0):t)− τt(δ(t−t0):t), ∀t = 1, 2, …, T (t0

is fixed). And then, we have Var{ ˆ̄τ(δ(t−t0):t,T)} = Var{ 1
T−t0

∑T
t=t0+1 ut,t0}. Analogous to the Proof of

Theorem 1 in Bojinov and Shephard (2019) and Lemma 1 in Papadogeorgou and others (2022), ut,t0
is a martingale difference sequence with respect to Ft−t0 given ut,t0 is bounded and E(ut,t0 |Ft−t0) = 0.
Consequently, the sequence ut,t0 is uncorrelated through time t, and thus

Var{ ˆ̄τ(δ(t−t0):t,T)} = 1
(T − t0)2

T∑
t=t0+1

Var{ut,t0} = 1
(T − t0)2

T∑
t=t0+1

E[Var{ut,t0 |Ft−t0}]

= 1
(T − t0)2

T∑
t=t0+1

E[Var{τ̂t(δ(t−t0):t)|Ft−t0}] ≤ 1
(T − t0)2

T∑
t=t0+1

Vt,

and the IPW estimator of an upper bound of Var{ ˆ̄τ(δ(t−t0):t,T)} can be expressed as 1
(T−t0)2

∑T
t=t0+1 V̂t.

Using the martingale sequence property for the estimation error ut,t0 , we can establish a central
limit theorem of the proposed estimators ˆ̄τ(δ(t−t0):t,T) that allows us to build CIs.

PROPOSITION 1 (Asymptotic Normality) Suppose that Assumptions 1-3 hold, if 1
T−t0

∑T
t=t0+1

E(u2
t,t0

|Ft−t0)
p−→ V ∗ for a positive constant V ∗, then as T → ∞, for a given t0 we have,

√
T − t0

{ ˆ̄τ(δ(t−t0):t,T) − τ̄ (δ(t−t0):t,T)
} = √

T − t0

{
1

T−t0

∑T
t=t0+1 ut,t0

} d−→ N (0, V ∗), where V ∗ =
limT→∞ 1

(T−t0)

∑T
t=t0+1 Var{ut,t0 |Ft−t0}.

The proof is provided in Section S.2 of the supplementary material available at Biostatistics online.
Here, we note that an upper bound of V ∗ is limT→∞ 1

(T−t0)

∑T
t=t0+1 Vt. Then, we construct the point-

wise Wald 100(1−α)% CI of ˆ̄τ(δ(t−t0):t,T) as { ˆ̄τ(δ(t−t0):t,T)± z1−α/2 ×
√

1
(T−t0)2

∑T
t=t0+1 V̂t}, where z1−α/2

denotes the upper α/2 critical value of a standard normal distribution.
We also construct a time-uniform CS for the parameter τ̄ (δ(t−t0):t,T). The 100(1 − α)% CS is a

sequence of CIs (LT , UT) that are constructed from the first T samples and have a uniform (simul-
taneous) coverage guarantee (Darling and Robbins, 1967), i.e., P{∀T ≥ t0 + 1 : τ̄ (δ(t−t0):t,T) ∈
(LT , UT)} ≥ 1 − α. We yield the following 100(1 − α)% CS for τ̄ (δ(t−t0):t,T) based on Theorem

2 of Waudby-Smith and others (2021): Setting ˆ̄VT = 1
T−t0

∑T
t=t0+1 V̂t, for any prespecified con-

stant ρ > 0, the 100(1 − α)% Lypaunov-type asymptotic CS for τ̄ (δ(t−t0):t,T) is
{ ˆ̄τ(δ(t−t0):t,T) ±√

2{(T−t0) ˆ̄VT ρ2(T)+1}
(T−t0)2ρ2(T)

log
(√

(T−t0) ˆ̄VT ρ2(T)+1
α

)}
, with an approximate solution of time-dependent ρ(T) :=√

−α2−2 log α+log(−2 log α+1−α2)

T−t0
to optimize the boundary of CS.

5. Meta-analysis on multisite time series

In many applications, time series data are available from multiple sites. In this section, we generalize
our ItvPS intervention framework to combine information from multisite time series. To formalize
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the causal identification in the context of random-effects across multisite time series, in Section 5.1,
we introduce and discuss new assumptions of identification. In subsequent Section 5.2, we describe
the estimation and inference of the pooled estimator based on meta-analysis models.

5.1. Assumptions and identification

There are at least two popular statistical models for meta-analysis, the fixed-effect (FE) model and
the random-effects model (Borenstein and others, 2010). The FE model assumes that the underly-
ing true effect is homogeneous for different sites, i.e., there is a common effect across all sites. The
random-effects model allows effect heterogeneity across sites, whereas assumes the effect in each
site is treated as a random sample from a super-population. In general, we found the random-effects
assumption is more plausible in many applications, including our motivating example, allowing us to
assume that the true causal effects of heat alerts on health outcomes vary across counties. Therefore,
we propose a meta-analysis method that relies on a random-effects model to obtain a pooled estima-
tor to summarize the overall causal effect of time series data across multiple counties (DerSimonian
and Laird, 2015).

Before introducing the new pooled estimator, we introduce additional assumptions to allow for
causal inference that synthesizes evidence from multisite time series. We use the index i to indicate the
sites (i.e., counties in our motivating example), for i ∈ {1, 2, …, N}. We denote byF t = {F1,t, ...,FN,t}
the filtration which captures the past information prior to time t in N sites.

ASSUMPTION 4 (Multisite Time Series SUTVA) The multisite outcome paths satisfy nonanticipat-
ing, consistency, and noninterference assumptions, that is, Y obs

i,t = Yi,t(wobs
1:N,1:T) = Yi,t(wobs

1:N,1:t) =
Yi,t(wobs

i,1:t) ∀ i = 1, ..., N; t = 1, ..., T .

Assumption 4 generalizes Assumption 1 to the context of multisites. The nonanticipating and
consistency assumptions are the same as in Assumption 1. The noninterference assumption, which
holds trivially for a single time series, requires that the potential outcomes for one site are only
affected by their own treatment path, and not by spillover effects across sites. In our motivating
example, since each county often covers relatively large areas, especially in rural areas, and our study
populations are older adults who are less to commute long-distance daily, we expect spillover effects
across county boundaries to be small compared to the causal effects of heat alerts within each given
county. However, we cannot rule out the possibility of the daily movement of people from one county
to neighboring counties or that people may be exposed to heat alerts from neighboring counties,
which may lead to some spillover effects.

ASSUMPTION 5 (Multisite Time Series Unconfoundedness) The assignment mechanism is uncon-
founded if for all Wi,1:T ∈ W = {0, 1}T , and F t, Wi,t ⊥ Yi,s(wi,1:s) | F t ∀ i = 1, ..., N; t =
1, ..., T and t ≤ s ≤ T .

Assumption 5 is similar to Assumption 2, which states the treatment path for each site depends
on the past information only. This does not rule out the possibility that the probability of receiving
the treatment on day t in one site could depend on covariates observed in another site prior to time t.
There is no need to assume that the potential outcome in site i, Yi,1:t(wi,1:t), is independent from the
potential outcome in a different site j, Yj,1:t(wj,1:t), for i = j. In our motivation example, we adjusted
for time-varying confounders identified by Weinberger and others (2021). Collaborating with envi-
ronmental health experts to collect additional pre-exposure covariates that are associated with both
exposures and outcomes and adjust for those covariates may further reduce the confounding bias.
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ASSUMPTION 6 (Spatial Random-effects across Multisites) Each site was given the same interven-
tion path δ1:T , and the duration-t0 causal estimands τ̄i(δ(t−t0):t) for site i follows τ̄i(δ(t−t0):t,T) =
τ̄N(δ(t−t0):t,T) + ui + εi, where τ̄N(δ(t−t0):t,T) is the weighted-average pooled causal estimand across
N sites, ∀ t = 1, ..., T ; t0 = 1, ..., t, ui is a random effect to allow for heterogeneity and spatial corre-
lation in the causal effects across site i = 1, ..., N, and εi is sampling variability for site i with known
within-site variance, Vi.

Assumption 6 has been used in meta-analysis allowing both effect heterogeneity and spatial cor-
relation (DerSimonian and Laird, 2015; Maire and others, 2019). This assumption consists of two
components: (i) we assume the causal estimands at each site are defined by the same ItvPS interven-
tion δ1:T and thus combining results in a meta-analysis is practically meaningful (e.g., one usually
chooses to combine clinical studies of the same drug, rather than completely different drugs, in one
meta-analysis); (ii) among the well-defined causal estimands τ̄i(δ(t−t0):t), we further assume effects
across multisites follow a spatial random-effects model. Such a spatial random-effects assumption
is previously stated in random-effect meta-analysis literature (Maire and others, 2019) and was used
in multisite environmental epidemiology studies (Bell and others, 2004).

We define a weighted-average causal estimand across N sites, as the estimand of interest:

τ̄N(δ(t−t0):t,T) =
N∑

i=1

ciτ̄i(δ(t−t0):t,T), where
N∑

i=1

ci = 1 and {ci, i = 1, 2, ..., N} are fixed.

Such a weighted causal estimand provides an overall summary of the causal effect drawn from a
super-population, whereas the observations from each site are treated as a random sample from this
super-population (DerSimonian and Laird, 2015). The remaining question is how to choose suitable
weights ci for each site i. To answer this question, we propose a random-effects meta-analysis model.

5.2. Estimation and inference

The random-effects allow different sites to have heterogeneous causal effects that are sampled from a
distribution characterizing the overall causal effect. The primary purpose is to make inferences about
the pooled causal effect and provide a quantitative measure of how the causal effects differ across the
sites. In the meta-analysis, to obtain a weighted-average causal estimand that better characterizes the
pooled causal effect synthesized from multiple sites, we assign more weight to sites that yield a more
precise estimate of the overall causal effect. Random-effect models use an inverse variance scheme
to assign weights to each site based on inverse proportions of the total variance from each site.
Specifically, there are two sources of variance under a random-effects model (Borenstein and others,
2010). First, the observed causal effect ˆ̄τi(δ(t−t0):t,T) for any time series in one site differs from that time
series’ true causal effect because of within-site variance, Vi. Second, the true causal effect for each
time series differs from the overall causal effect because of between-site variance, 	2. DerSimonian
and Laird (1986) are among the first to propose the following method to estimate the between-site
variance, 	2:

(1) Obtain a common effect estimator under a FE meta-analysis model, ˆ̄τFE =
∑N

i=1
ˆ̄τi(δ(t−t0):t,T )/Vi∑N

i=1 1/Vi
.

(2) Based on ˆ̄τFE, calculate the Cochran’s Q-statistic, Q =∑N
i=1

[ ˆ̄τi(δ(t−t0):t,T )−ˆ̄τFE]2
Vi

.

(3) Obtain the estimator for the between-site variance 	2 as 	̂2
DL = Q−(N−1)∑N

i=1 1/Vi−
∑N

i=1 1/V2
i∑N

i=1 1/Vi

.
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The weight assigned to each site under the inverse variance scheme is ci = 1
Vi+	2 , i = 1, 2, ..., N,

where the within-site variance, Vi, is unique to each site, whereas the between-site variance 	2 is a
quantity that is common across sites. Various methods to estimate 	2 are summarized in Borenstein
and others (2010). To allow spatial correlation in the causal effects across sites, we additionally use a
spatial random-effects meta-analysis model proposed by Maire and others (2019). For this model, we
first identify the spatial coordinates (longitude and latitude) for the centroids of each county. We then
specify a Gaussian spatial correlation structure based on the relative Euclidean distances computed
by the longitude and latitude, d. Finally, we fit the following spatial random-effects meta-analysis
model using metafor R package (Viechtbauer, 2010): τ̄i(δ(t−t0):t,T) = τ̄N(δ(t−t0):t,T) + ui + εi, where
τ̄i(δ(t−t0):t) is the duration-t0 causal effects for site i, τ̄N(δ(t−t0):t,T) is the weighted-average pooled causal
effect across N sites. The random effects u1, …, uN were assumed to follow a multivariate normal
distribution with a mean of zero and a variance–covariance matrix Cov(ui, uj) = 	2 ×exp(−d2

i,j/ρ
2),

where 	2 denotes the between-site variance, di,j denotes the Euclidean distance between two spatial
points i and j. ρ is the spatial correlation parameter for the Gaussian correlation structure, which
can be estimated by restricted maximum likelihood.

6. Simulation study

We study finite-sample properties of the proposed estimators via simulation studies on a single time
series, in which we vary: (i) the length of the time series T ; (ii) the duration of interventions t0; and (iii)
the assignment mechanisms of the treatment pt(Wt = 1 | Ft). We compare the IPW estimator to the
nonparametric influence-function-based estimator initially proposed by Kennedy (2019), modified
to the time series setting. To reflect the nature of treatment assignment in our motivating example, we
generate the treatment Wt under a nearly nonoverlapping setting. In particular, we consider a time
series with length T . For each t = 1, …, T , Ct = (C1,t, C2,t, C3,t, C4,t, C5,t) ∼ N(0, I5); pt(Wt = 1 |
Ft) = expit{10× (

∑5
j=1 Cj,t/5−Wt−1 +0.5)}; Yt | Wt, Wt−1, Ct ∼ N(3×Wt +Wt−1 +∑5

j=1 Cj,t/5, 1).
At time t, the random assignment mechanism of the treatment Wt depends on both Ct, and the
treatment at time t − 1, Wt−1. Also the outcome Yt depends on the treatments both at time t and
t − 1 (duration-1 effect). The data-generating mechanism described above mimics a nearly nonover-
lap setting (see Figure S.1 of the supplementary material available at Biostatistics online, showing
the distributions of the time-varying propensity scores have little overlap across treated vs. untreated
units). The main quantity of interest is the duration-t0 causal estimand on the observed treatment
path. We assess the performance of the selected estimators by calculating the integrated bias and

root mean squared error (RMSE) defined as; ̂Integrated Bias = 1
J

∑J
j=1

∣∣∣ 1
K

∑K
k=1

{ ˆ̄τ k(δt−t0:t,T ,j) −
τ̄ k(δt−t0:t,T ,j)

}∣∣∣, ̂RMSE =
√

N
J

∑J
j=1

[
1
K

∑K
k=1

{ ˆ̄τ k(δt−t0:t,T ,j) − τ̄ k(δt−t0:t,T ,j)
}2
]1/2

, where τ̄ k(δt−t0:t,T ,j) :=
1

T−t0

∑T
t=t0+1 τ̄ k(δt−t0:t,j) is the true temporal average causal quantity, and ˆ̄τ k(δj) is its estimator based

on the estimated time-varying propensity score, in which the superscript k indicates the simulation
replicate. We assess the estimation performances at J = 50 values of δj equally spaced between
0.1 and 10 evaluated on K = 500 simulation replicates. We also assess the average coverage of our
proposed point-wise Wald 95% CIs, and the coverage of time-uniform 95% CSs.

We vary the following combinations of (T , t0), T = (200, 1000, 5000), and t0 = (1, 4, 9). We
apply both parametric and nonparametric models to estimate the time-varying propensity scores,
following the recommendation by Bonvini and others (2021), (i) logistic regression; (ii) Super Learner
(Van der Laan and others, 2007), which combines generalized additive models, multivariate adaptive
regression splines, support vector machines, and random forests, along with parametric general-
ized linear models (with and without interactions, and with terms selected stepwise via Akaike
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Table 1. Characteristics for NWS-issued heat alerts, all-cause deaths
among Medicare enrollees, and cause-specific hospitalizations for five
heat-related diseases among Medicare fee-for-service (FFS) enrollees
across April–October of 2006–2016

Variables 2837 counties 550 populous counties†

% Days with heat alerts 2.52 2.22
No. of deaths 10 467 201 7 653 987
No. of heat stroke 97 399 72 649
No. of urinary tract infections 1 424 046 1 061 060
No. of septicemia 2 614 871 1 954 011
No. of renal failure 1 207 903 894 164
No. of fluid and electrolyte disorders 928 270 673 007

Counties with population size > 100 000.

information criterion (AIC)), consistent with Kennedy (2019) (implemented by the SuperLearner R
package). We assume that the form of the time-varying propensity score model is correctly specified
as Wt | Ct, Wt−1 with a logit link. We omit the RMSE and coverage rate results for the IPW estimators
that use Super Learner for propensity score models since these estimators fail to achieve asymptotic
linearity and thus are generally incompatible with theoretical claims requiring asymptotic normality,
unlike those using a correctly specified parametric logistic regression for propensity score models. We
conduct additional simulations in Section S.3 of the supplementary material available at Biostatistics
online when the form of the time-varying propensity score model is misspecified.

Table 2 shows the integrated bias and RMSE of the IPW and influence-function-based estimator,
along with the average coverage rate of their corresponding Wald 95% CIs. Under the same dura-
tion t0, we observed that the integrated bias and RMSE of the estimator generally decrease when
the length of the time series, T , increases, regardless of how the time-varying propensity score is
estimated, either by logistic regression or Super Learner. We also observed a decreased performance
of the estimator as the duration, t0, increases. This finding is not surprising given that the estimated
weights in the proposed weighting estimator depend on the product of t0+1 terms of estimated ItvPS.
We expect that the proposed estimator will likely be unstable, and thus the integrated bias and RMSE
will be larger when t0 increases. In practice, the exact duration t0 is unknown, and researchers need to
specify t0 based on their prior domain knowledge. The simulation results suggest that the choice of t0

should be parsimonious, i.e., one should choose a duration t0 that can capture the data complexity
yet is as small as possible. We found, in general, the IPW estimator and influence-function-based
estimator perform comparably in the simulation settings considered. Although, under these simula-
tion settings, the IPW estimators that pair with Super Learner perform well in terms of integrated
bias, possibly due to reduced model misspecification bias, such finite-sample results are not gener-
ally held, especially considering the potential large asymptotic bias arising from the slower converge
rate of Super Learner. Additional simulations in Section S.3 of the supplementary material avail-
able at Biostatistics online present similar findings when the underlying data-generating mechanism
is unknown and potentially misspecified.

We also found that the coverage rates of the Wald 95% CIs for the IPW estimator were near
or above the nominal level (95%) when T is relatively large, as shown in Table 2. The conservative
performance is likely due to the fact that we used an upper bound for the variance estimates when
constructing the CIs. The coverage rates of the Wald 95% CIs for the influence-function-based esti-
mator were more frequently below the nominal level. The coverage rates decrease when t0 increases,
which is consistent with the coverage results shown in Papadogeorgou and others (2022). Figure 2
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Table 2. Simulation results for the scenario assuming the treatment assignment mechanism is specified
with a logit link. The integrated bias and RMSE (multiplied by 10 for easier interpretation) of proposed
estimators, the average coverage of proposed confidence intervals (CIs), and the uniform coverage of
proposed confidence sequences (CSs) for IPW estimators

Propensity score model IPW Influence-function-based
T t0 Bias RMSE Coverage (%) Uniform Bias RMSE Coverage (%)

coverage (%)

Logistic regression

200
1 1.34 1.57 99.97 98.20 1.31 1.57 99.84
4 2.95 3.15 97.80 98.20 2.80 3.03 96.56
9 5.57 5.73 89.58 16.40 5.18 5.38 84.22

1000
1 0.25 0.45 100.00 100.00 0.30 0.48 98.06
4 0.59 0.74 99.98 100.00 0.78 0.90 79.30
9 1.06 1.18 96.45 100.00 1.60 1.68 65.46

5000
1 0.12 0.20 100.00 100.00 0.16 0.23 99.42
4 0.30 0.35 100.00 100.00 0.40 0.43 91.84
9 0.60 0.64 97.68 100.00 0.78 0.81 70.41

Super Learner

200
1 1.08 1.26 1.50 99.16
4 2.24 2.39 2.62 95.24
9 4.11 4.23 4.43 82.65

1000
1 0.04 0.08 0.35 99.97
4 0.08 0.25 0.46 99.73
9 0.21 0.40 0.59 98.70

5000
1 0.04 0.04 0.16 100.00
4 0.14 0.15 0.24 99.89
9 0.33 0.34 0.42 98.14

visualizes the curve of duration-1 causal effects when the probability of the treatment assignment
is multiplied by odds ratios δt ∈ [0.1, 10]. The solid red line represents the estimated causal effects
along with point-wise Wald 95% CIs (dashed line). We found that the bias between the estimated
curve and the true curve reduces when T increases. The point-wise Wald 95% CIs capture the true
curve in all three scenarios; T = 200, 1000, 5000. The time-uniform CSs generally perform unstably
when the sample sizes are small (T = 200) yet perform conservatively when the sample sizes are
relatively large (T = 1000, 5000).

We design our simulation studies to reflect scenarios of nearly nonoverlap between treated and
untreated units observed in our data application. Our simulation results show that the proposed
estimators perform well in terms of bias and RMSE even when the overlap assumption is nearly
violated.

7. Application

We analyze the multisite time series data described in Section 2.2. First, we apply the proposed
methods to estimate the causal estimands τ̄i(δ(t−t0):t,T). We assume δt is the same for every day t
during the warm months (April–October) of 2006–2016. In the time-varying propensity score model,
we included the following observed covariates: daily maximum heat index, lag-1 daily maximum
heat index, lag-2 daily maximum heat index, moving average heat index during the current warm
season, lag-1 day heat alert, lag-2 day heat alert, the running total number (the summation of the
sequence of numbers updated daily) of heat alerts that have been issued during the current warm
season, the moving average number of deaths/hospitalizations during the current warm season, day
of the week, and federal holidays. Note, as described in Section 2.2, the inclusion of past treatments
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Fig. 2. The duration-1 causal effect curves obtained by the IPW estimation when the probability of treatment
assignments was multiplied by an odds ratio δt ∈ [0.1, 10]. The solid red line represents the estimated causal
effect curve along with the point-wise Wald 95% CIs (red dashed line) and the time-uniform 95% CSs (dot-dash
line). The solid blue line represents the true causal effect curve. The left, middle, and right panels reflect the
simulation scenarios with T = 200, 1000, 5000. The propensity scores were estimated by a logistic regression
model.

(lagged heat alerts) and past outcomes (historical deaths/hospitalizations) is allowed in the time-
varying propensity score model. Considering the relationships between time-varying treatment and
covariates are potentially complex, the model misspecification bias is of greater concern in this data
application; we estimate the time-varying propensity score by the Super Learner using the same
combination of algorithms described in Section 6.

For each county i, we estimate the daily numbers of all-cause deaths and cause-specific hospital-
izations for five heat-related diseases (heat stroke, urinary tract infections, septicemia, renal failure,
fluid, and electrolyte disorders) under several ItvPS intervention scenarios ranging from δt = 1 to
δt = 10. We consider the causal estimands with duration t0 = 2, consistent with Weinberger and oth-
ers (2018). We define the county-specific causal effect curve for county i as τ̄i(δ(t−2):t,T) − τ̄i(1, 1, 1),
where τ̄i(δ(t−2):t,T) denotes the estimated daily average number of deaths or hospitalizations under
various ItvPS interventions (δt ∈ [1, 10]) and τ̄i(1, 1, 1) denotes the quantity corresponding to the
daily average number of deaths or hospitalizations observed factually (as if there was no change in
the treatment assignments). After obtaining all N = 2837 county-specific causal effect curves, we
utilize the spatial random-effects meta-analysis approach proposed in Section 5 to pool the estimated
county-specific causal effect curves across multiple counties and obtain the estimated pooled causal
effect curve,

∑N
i=1 ci[τ̄i(δ(t−2):t,T)− τ̄i(1, 1, 1)], where the weights ci, i = 1, 2, …, N are obtained by the

spatial random-effects meta-analysis model.
Figure 3 shows the estimated pooled causal effects for the daily average number of all-cause deaths

and cause-specific hospitalizations for five heat-related diseases per county among 2837 counties
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Fig. 3. The estimated pooled causal effect curves of average all-cause deaths and cause-specific hospitalizations
for five heat-related diseases per day per county among 2837 counties, assuming the duration of interventions
was 2 days. The curves represent the differences in deaths and hospitalizations comparing the counterfactual
situations where the probability of issuing heat alerts was multiplied by an odds ratio δt ∈ [1, 10] to the fac-
tual situations where the probability of issuing heat alerts remains unchanged (δt = 1). The dashed red lines
represent the corresponding point-wise Wald 95% CIs of the differences. The dashed blue lines represent the
time-uniform 95% CSs.

across the warm months of 2006–2016. The curves represent the differences in daily average numbers
of deaths and hospitalizations averaged across 2837 counties comparing the counterfactual scenarios
where the probability of issuing heat alerts was multiplied by an odds ratio δt ∈ [1, 10] to the factual
scenario, where the probability of issuing heat alerts remains unchanged (δt = 1). The dashed red
lines represent the corresponding point-wise Wald 95% CIs of the differences. The dashed blue lines
represent the time-uniform 95% CSs. The vertical lines represent the average number of deaths and
hospitalizations that could be avoided per day per county and their corresponding CIs if we had
increased the probability of issuing heat alerts by the maximum odds considered, δt = 10. We found,
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in general, consistent downward patterns among the pooled causal effect curves for each health
outcome as the log(δt) increases above 0, indicating slight reductions in average all-cause deaths
and cause-specific hospitalizations for five heat-related diseases among Medicare enrollees as log(δt)

increases. The CIs contain 0 throughout the range of δt ∈ [1, 10].
Quantitatively, we found that if we had increased the probability of issuing heat alerts by an odds

ratio δt = 10, on average 0.15 (95% CI: − 0.01 to 0.32) deaths could be averted per day per county
(see vertical line in Figure 3a). Based on these estimates, solely among extremely hot days (i.e., the
top 5% hottest days when the heat alerts are more likely to be issued), we estimated 4653 avoid-
able deaths (95% CI: − 415 to 9576) across all 2837 counties in one warm season. Similarly, if we
increase the probability of issuing heat alerts by an odds ratio δt = 10, the numbers of hospitaliza-
tions averted are 42 (95% CI: − 7 to 91) for heat stroke; 634 (95% CI: − 81 to 1327) for urinary tract
infections; 1157 (95% CI:−134 to 2409) for septicemia; 585 (95% CI:−18 to 1169) for renal failure;
405 (95% CI: − 43 to 840) for fluid and electrolyte disorders among extremely hot days in one warm
season. However, given the wide CIs for the results of all outcomes, we did not find any statistically
significant causal effects of increasing the probability of issuing heat alerts on health outcomes com-
paring δt = 10 (increased odds) vs. δt = 1 (unchanged). We also found there is large between-county
heterogeneity in the random-effects meta-analysis model, (P-value of heterogeneity test < 0.001),
for all outcomes. Overall, our findings suggest weak evidence that increasing the probability of
issuing heat alerts may bring health benefits to the US Medicare population.

In Section S.4 of the supplementary material available at Biostatistics online, we conducted addi-
tional county-specific analyses that include time series data from three selected counties: Santa
Clara, CA; Maricopa, AZ; and New York, NY, separately. Notably, we found that in Maricopa,
AZ, increasing the probability of issuing heat alerts could significantly reduce all-cause deaths,
whereas less dramatic but still statistically significant results were found in Santa Clara, CA and
New York, NY (see Figure S.2 of the supplementary material available at Biostatistics online). As
a sensitivity analysis, we analyzed a subset of 550 counties with population sizes > 100 000 (“pop-
ulous counties”). These counties included more than 70% of all-cause deaths and cause-specific
hospitalizations observed among the 2837 counties. As shown in Figure S.3 of the supplementary
material available at Biostatistics online, the shapes of the causal effect curves based on the subset
of 550 populous counties are very similar to the estimated curves based on data from all 2837 coun-
ties. We found nonsignificant results for all outcomes. The random-effects meta-analysis model still
indicates considerable between-county heterogeneity (P-value of heterogeneity test < 0.001) for all
outcomes. Additional analysis was conducted in which the duration of interventions was varied.
We also estimated pooled causal effect curves assuming the duration of interventions was 0 and 5
days, respectively. As shown in Figures S.4 and S.5 of the supplementary material available at Bio-
statistics online, the causal effect of increasing the frequency of issuing heat alerts may have more
pronounced effects on health outcomes when considering a longer duration of interventions. Impor-
tantly, we observed statistically significant results of the causal effects of increasing the probability
of issuing heat alerts on health outcomes comparing δt = 10 (increased odds) vs. δt = 1 (unchanged)
when considering cumulative effects up to duration t0 = 5, i.e., on average 0.15 (95% CI 0.06–0.24)
avoidable deaths per day per county. We also found the widths of CIs for the causal effect curves of
duration-0, duration-2, and duration-5 estimands did not change notably as t0 varies.

8. Discussion

We have developed a novel causal inference framework for multisite time series data, which relies
on stochastic interventions. Under this framework, we introduced a class of causal estimands and
their unbiased estimators with theoretical justification. In the context of multisite time series data,

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/article/25/1/57/7054586 by guest on 17 M

arch 2025

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxad002#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxad002#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxad002#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxad002#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxad002#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxad002#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxad002#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxad002#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxad002#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxad002#supplementary-data


Stochastic intervention in time series 75

we link our ItvPS intervention framework to the spatial random-effects meta-analysis. The ultimate
goal is to obtain a pooled causal estimator that summarizes the potentially heterogeneous causal
effects from multisite time series studies.

Our approach was motivated by our data application, where the goal was to assess whether or
not increasing the probability of issuing heat alerts reduces morbidity and mortality. More specifi-
cally, we estimated the causal effects of increasing the probability of issuing heat alerts on all-cause
deaths and cause-specific hospitalizations for five heat-related diseases. We found some evidence of
reductions in morbidity and mortality with large statistical uncertainty. Importantly, the random-
effects meta-analysis model indicated large heterogeneity of the causal effects across different
counties.

One key distinction of our approach compared to more traditional statistical methods in envi-
ronmental epidemiology is that most time series studies in this context use matched case-crossover
or difference-in-difference designs, where the focus is often the (average) causal contrast between
treated days (i.e., days with heat alerts) vs. untreated days (i.e., days without heat alerts), and the
number of heat alert days is then fixed for a given study period in one chosen site (Weinberger and
others, 2018, 2021). In contrast, our analysis focuses on the causal effect of a stochastic intervention,
estimating the causal effect as the probability of issuing heat alert changes, and as such, the counter-
factual heat alert days are not fixed. Therefore, our results are not directly comparable to previously
published studies (Weinberger and others, 2021).

While our proposed novel causal inference approach provides a new powerful tool in policy evalu-
ations, some methodology considerations are needed when applying this approach to future studies.
First, we expect causal effects defined by stochastic interventions to answer a different policy ques-
tion than that of a deterministic intervention (Kennedy, 2019). The proposed causal estimand is
an intuitive quantity answering the following causal question “how many adverse health outcomes
could have been averted if we changed the frequency of heat alerts?” which was the focus of our
work. However, other practitioners’ interests may be more aligned with estimating causal effects
of deterministic interventions, for instance, “how many adverse health outcomes could have been
avoided if the temperature was, on average, one degree lower during extremely hot days (Weinberger
and others, 2020)?” In that case, causal inference methods based on deterministic interventions (Boji-
nov and Shephard, 2019; Bojinov and others, 2021; Rambachan and Shephard, 2021) may be used.
Second, the proposed weighting estimator maintains ideal asymptotic properties only when the
time-varying propensity scores can be modeled using correctly specific parametric models. Using
adaptive nonparametric models for propensity score estimation may reduce the model misspecifi-
cation bias in weights; however, such IPW estimators do not attain asymptotic normality and may
suffer from large asymptotic bias. Along this line, an influence-function-based estimator may be
compatible with the nonparametric propensity score estimation (Kennedy, 2022); yet its asymptotic
properties under the time series setting require further investigation. As part of future work, we
plan to conduct a theoretical analysis of doubly robust targeted estimation of an ItvPS interven-
tion. Third, the random-effects meta-analysis creates a weighted-average causal estimand and its
corresponding pooled estimator, in which the weights are calculated by combining between-site and
within-site variances. For this reason, the weighted-average causal quantity is defined on a hypothet-
ical weighted population. Dahabreh and others (2020) have criticized that standard meta-analyses
may produce results that do not belong to a clear target population when each site represents a
different population, and the treatment effect varies across these populations. As part of future
work, we plan to develop approaches that allow inferences to be transported from multisite time
series to a clearly specified target population (Dahabreh and others, 2020). Fourth, the noninter-
ference assumption may not hold in many climate and health studies, such as this one, which rely
on spatial–temporal data. For instance, the NWS-issued heat alerts in one county may impact
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people in adjacent counties. As part of future work, we hope to extend the time series intervention
path to a multivariate intervention path defined by random matrices (Papadogeorgou and others,
2022), to potentially overcome the violation of noninterference assumption, and identify direct
and spillover effects under this stochastic intervention framework. Fifth, the stable estimation of
time-varying propensity score based on time series observational data is challenging since the time-
varying confounder sets are potentially high-dimensional. While in our data application we used
the state-of-the-art Super Learner (an ensemble of flexible parametric/nonparametric models) to
estimate time-varying propensity scores, we had to limit the size of confounder sets to avoid unsta-
ble estimates due to the curse of dimensionality. Also, the proposed weighting estimator that relies
on products of the estimated ItvPS may be unstable when accounting for the longer duration of
interventions. We plan to generalize covariate balance methods to improve high-dimensional propen-
sity score estimation and stability of the weighting estimators in time series observational studies
(Athey and others, 2018).

The stochastic intervention framework for time series data introduced in this article is the first
approach that allows the identification and estimation of causal quantities defined by stochastic
interventions on multisite time series. We believe that this framework addresses one of the emerg-
ing methodological needs in climate and health research, where researchers often collect time series
data from multiple geographic locations seeking causal evidence among diverse populations (Liu
and others, 2019; Lee and others, 2020). Furthermore, we expect that the proposed framework can
be applied to science and policy-relevant research in political science, economics, and law, where a
considerable amount of spatial–temporal data are generated and collected.

9. Software

Software in the form of R code to implement both simulation studies and data applications is
available at https://github.com/wxwx1993/TS_Stochastic.

Supplementary material

Supplementary material is available online at http://biostatistics.oxfordjournals.org.
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